Suppr超能文献

激光诱导辐射微束技术与活细胞中的同步实时荧光成像

Laser-induced radiation microbeam technology and simultaneous real-time fluorescence imaging in live cells.

作者信息

Botchway Stanley W, Reynolds Pamela, Parker Anthony W, O'Neill Peter

机构信息

Research Complex at Harwell, Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxford, Oxfordshire, United Kingdom.

出版信息

Methods Enzymol. 2012;504:3-28. doi: 10.1016/B978-0-12-391857-4.00001-X.

Abstract

The use of nano- and microbeam techniques to induce and identify subcellular localized energy deposition within a region of a living cell provides a means to investigate the effects of low radiation doses. Particularly within the nucleus where the propagation and processing of deoxyribonucleic acid (DNA) damage (and repair) in both targeted and nontargeted cells, the latter being able to study cell-cell (bystander) effects. We have pioneered a near infrared (NIR) femtosecond laser microbeam to mimic ionizing radiation through multiphoton absorption within a 3D femtoliter volume of a highly focused Gaussian laser beam. The novel optical microbeam mimics both complex ionizing and UV-radiation-type cell damage including double strand breaks (DSBs). Using the microbeam technology, we have been able to investigate the formation of DNA DSB and subsequent recruitment of repair proteins to the submicrometer size site of damage introduced in viable cells. The use of a phosphorylated H2AX (γ-H2AX a marker for DSBs, visualized by immunofluorescent staining) and real-time imaging of fluorescently labeling proteins, the dynamics of recruitment of repair proteins in viable mammalian cells can be observed. Here we show the recruitment of ATM, p53 binding protein 1 (53BP1), and RAD51, an integral protein of the homologous recombination process in the DNA repair pathway and Ku-80-GFP involved in the nonhomologous end joining (NHEJ) pathway as exemplar repair process to show differences in the repair kinetics of DNA DSBs. The laser NIR multiphoton microbeam technology shows persistent DSBs at later times post laser irradiation which are indicative of DSBs arising at replication presumably from UV photoproducts or clustered damage containing single strand breaks (SSBs) that are also observed. Effects of the cell cycle may also be investigated in real time. Postirradiation and fixed cells studies show that in G1 cells a fraction of multiphoton laser-induced DSBs is persistent for >6h in addition to those induced at replication demonstrating the broad range of timescales taken to repair DNA damage.

摘要

利用纳米和微束技术诱导并识别活细胞区域内的亚细胞定位能量沉积,为研究低辐射剂量的影响提供了一种手段。特别是在细胞核内,脱氧核糖核酸(DNA)损伤(及修复)在靶向细胞和非靶向细胞中的传播与处理,后者能够研究细胞间(旁观者)效应。我们开创了一种近红外(NIR)飞秒激光微束,通过在高度聚焦的高斯激光束的三维飞升体积内进行多光子吸收来模拟电离辐射。这种新型光学微束模拟了复杂的电离和紫外线辐射型细胞损伤,包括双链断裂(DSB)。利用微束技术,我们能够研究DNA双链断裂的形成以及随后修复蛋白募集到活细胞中引入的亚微米尺寸损伤位点的情况。通过使用磷酸化的H2AX(γ-H2AX,双链断裂的标志物,通过免疫荧光染色可视化)以及对荧光标记蛋白进行实时成像,可以观察到活的哺乳动物细胞中修复蛋白募集的动态过程。在这里,我们展示了ATM、p53结合蛋白1(53BP1)和RAD51的募集情况,RAD51是DNA修复途径中同源重组过程的一个整合蛋白,以及参与非同源末端连接(NHEJ)途径的Ku-80-GFP,作为典型的修复过程来展示DNA双链断裂修复动力学的差异。激光近红外多光子微束技术显示,在激光照射后的较晚时间点存在持续的双链断裂,这表明双链断裂可能在复制时由紫外线光产物或包含单链断裂(SSB)的簇状损伤引起,这些情况也被观察到。细胞周期的影响也可以实时研究。辐照后和固定细胞的研究表明,在G1期细胞中,除了复制时诱导产生的双链断裂外,一部分多光子激光诱导的双链断裂会持续超过6小时,这表明修复DNA损伤所需的时间范围很广。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验