Suppr超能文献

盲人及视力正常人群对虚拟物体的触觉探索:β1 脑电节律在感觉替代和超模式心理映射中的作用。

Tactile exploration of virtual objects for blind and sighted people: the role of beta 1 EEG band in sensory substitution and supramodal mental mapping.

机构信息

Istituto Italiano di Tecnologia, Via Morego, 30, I 16163, Genoa, Italy.

出版信息

J Neurophysiol. 2012 May;107(10):2713-29. doi: 10.1152/jn.00624.2011. Epub 2012 Feb 15.

Abstract

The neural correlates of exploration and cognitive mapping in blindness remain elusive. The role of visuo-spatial pathways in blind vs. sighted subjects is still under debate. In this preliminary study, we investigate, as a possible estimation of the activity in the visuo-spatial pathways, the EEG patterns of blind and blindfolded-sighted subjects during the active tactile construction of cognitive maps from virtual objects compared with rest and passive tactile stimulation. Ten blind and ten matched, blindfolded-sighted subjects participated in the study. Events were defined as moments when the finger was only stimulated (passive stimulation) or the contour of a virtual object was touched (during active exploration). Event-related spectral power and coherence perturbations were evaluated within the beta 1 band (14-18 Hz). They were then related to a subjective cognitive-load estimation required by the explorations [namely, perceived levels of difficulty (PLD)]. We found complementary cues for sensory substitution and spatial processing in both groups: both blind and sighted subjects showed, while exploring, late power decreases and early power increases, potentially associated with motor programming and touch, respectively. The latter involved occipital areas only for blind subjects (long-term plasticity) and only during active exploration, thus supporting tactile-to-visual sensory substitution. In both groups, coherences emerged among the fronto-central, centro-parietal, and occipito-temporal derivations associated with visuo-spatial processing. This seems in accordance with mental map construction involving spatial processing, sensory-motor processing, and working memory. The observed involvement of the occipital regions suggests that a substitution process also occurs in sighted subjects. Only during explorations did coherence correlate positively with PLD for both groups and in derivations, which can be related to visuo-spatial processing, supporting the existence of supramodal spatial processing independently of vision capabilities.

摘要

失明者的探索和认知映射的神经相关性仍然难以捉摸。在盲人和视力正常的受试者中,视空间通路的作用仍存在争议。在这项初步研究中,我们研究了盲人和蒙住眼睛的视力正常的受试者在主动触觉构建认知地图时的 EEG 模式,这可能是视空间通路活动的一种估计,与休息和被动触觉刺激相比,他们使用虚拟物体进行了触觉构建。十名盲人及十名匹配的蒙住眼睛的视力正常的受试者参加了这项研究。事件被定义为手指仅受到刺激(被动刺激)或触摸虚拟物体轮廓的时刻(在主动探索期间)。在β 1 波段(14-18 Hz)内评估事件相关的频谱功率和相干性扰动。然后,将它们与探索所需的主观认知负荷估计(即感知难度水平(PLD))相关联。我们发现了两组中用于感觉替代和空间处理的互补线索:在探索过程中,盲人及视力正常的受试者都显示出晚期功率降低和早期功率增加,这可能分别与运动编程和触摸有关。后者仅在盲人(长期可塑性)和主动探索期间涉及枕叶区域,从而支持触觉到视觉的感觉替代。在两组中,在与视空间处理相关的额中央、中央顶和枕颞衍生中出现了相干性。这似乎符合涉及空间处理、感觉运动处理和工作记忆的心理地图构建。观察到的枕叶区域的参与表明替代过程也发生在视力正常的受试者中。只有在探索过程中,两组的相干性与 PLD 呈正相关,并且在与视空间处理相关的衍生中也呈正相关,这支持了独立于视觉能力的超模态空间处理的存在。

相似文献

3
Neural correlates associated with superior tactile symmetry perception in the early blind.
Cortex. 2015 Feb;63:104-117. doi: 10.1016/j.cortex.2014.08.003. Epub 2014 Aug 27.
5
Working memory training in congenitally blind individuals results in an integration of occipital cortex in functional networks.
Behav Brain Res. 2018 Aug 1;348:31-41. doi: 10.1016/j.bbr.2018.04.002. Epub 2018 Apr 12.
6
Oscillatory activity reflects differential use of spatial reference frames by sighted and blind individuals in tactile attention.
Neuroimage. 2015 Aug 15;117:417-28. doi: 10.1016/j.neuroimage.2015.05.068. Epub 2015 May 30.
7
Predicting successful tactile mapping of virtual objects.
IEEE Trans Haptics. 2013 Oct-Dec;6(4):473-83. doi: 10.1109/TOH.2013.49.
8
Neural correlates of virtual route recognition in congenital blindness.
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12716-21. doi: 10.1073/pnas.1006199107. Epub 2010 Jun 28.

引用本文的文献

1
The neuromechanical of Beta-band corticomuscular coupling within the human motor system.
Front Neurosci. 2024 Aug 15;18:1441002. doi: 10.3389/fnins.2024.1441002. eCollection 2024.
2
EEG-based functional connectivity for tactile roughness discrimination.
Cogn Neurodyn. 2023 Aug;17(4):921-940. doi: 10.1007/s11571-022-09876-1. Epub 2022 Sep 26.
3
The reality of virtual reality.
Front Psychol. 2023 Feb 15;14:1093014. doi: 10.3389/fpsyg.2023.1093014. eCollection 2023.
4
Spatial Cognition of the Visually Impaired: A Case Study in a Familiar Environment.
Int J Environ Res Public Health. 2023 Jan 18;20(3):1753. doi: 10.3390/ijerph20031753.
5
Enabling visually impaired people to learn three-dimensional tactile graphics with a 3DOF haptic mouse.
J Neuroeng Rehabil. 2021 Sep 25;18(1):146. doi: 10.1186/s12984-021-00935-y.
7
Improving spatial working memory in blind and sighted youngsters using programmable tactile displays.
SAGE Open Med. 2018 Dec 18;6:2050312118820028. doi: 10.1177/2050312118820028. eCollection 2018.
8
Tactile Perception for Stroke Induce Changes in Electroencephalography.
Hong Kong J Occup Ther. 2016 Dec;28(1):1-6. doi: 10.1016/j.hkjot.2016.10.001. Epub 2016 Dec 30.
9
Neurophysiological features of tactile versus visual guidance of ongoing movement.
Exp Brain Res. 2017 Sep;235(9):2615-2625. doi: 10.1007/s00221-017-4999-z. Epub 2017 Jun 1.
10
Learning New Sensorimotor Contingencies: Effects of Long-Term Use of Sensory Augmentation on the Brain and Conscious Perception.
PLoS One. 2016 Dec 13;11(12):e0166647. doi: 10.1371/journal.pone.0166647. eCollection 2016.

本文引用的文献

2
Alpha modulation in parietal and retrosplenial cortex correlates with navigation performance.
Psychophysiology. 2012 Jan;49(1):43-55. doi: 10.1111/j.1469-8986.2011.01270.x. Epub 2011 Aug 8.
3
Tactile spatial acuity enhancement in blindness: evidence for experience-dependent mechanisms.
J Neurosci. 2011 May 11;31(19):7028-37. doi: 10.1523/JNEUROSCI.6461-10.2011.
4
Stimulus-dependent EEG activity reflects internal updating of tactile working memory in humans.
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8444-9. doi: 10.1073/pnas.1104189108. Epub 2011 May 2.
5
A spatial explicit strategy reduces error but interferes with sensorimotor adaptation.
J Neurophysiol. 2011 Jun;105(6):2843-51. doi: 10.1152/jn.00002.2011. Epub 2011 Mar 30.
6
A new neural framework for visuospatial processing.
Nat Rev Neurosci. 2011 Apr;12(4):217-30. doi: 10.1038/nrn3008.
7
Neuronal assembly dynamics in the beta1 frequency range permits short-term memory.
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3779-84. doi: 10.1073/pnas.1019676108. Epub 2011 Feb 14.
8
Functional coupling of parietal α rhythms is enhanced in athletes before visuomotor performance: a coherence electroencephalographic study.
Neuroscience. 2011 Feb 23;175:198-211. doi: 10.1016/j.neuroscience.2010.11.031. Epub 2010 Dec 7.
10
Temporal evolution of oscillatory activity predicts performance in a choice-reaction time reaching task.
J Neurophysiol. 2011 Jan;105(1):18-27. doi: 10.1152/jn.00778.2010. Epub 2010 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验