Suppr超能文献

嗜热硫还原球菌 DNA 聚合酶 III 的聚合动力学和保真度。

Kinetics and fidelity of polymerization by DNA polymerase III from Sulfolobus solfataricus.

机构信息

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.

出版信息

Biochemistry. 2012 Mar 6;51(9):1996-2007. doi: 10.1021/bi201799a. Epub 2012 Feb 27.

Abstract

We have biochemically and kinetically characterized the polymerase and exonuclease activities of the third B-family polymerase (Dpo3) from the hyperthermophilic Crenarchaeon, Sulfolobus solfataricus (Sso). We have established through mutagenesis that despite incomplete sequence conservation, the polymerase and exonuclease active sites are functionally conserved in Dpo3. Using pre-steady-state kinetics, we can measure the fidelity of nucleotide incorporation by Dpo3 from the polymerase active site alone to be 10(3)-10(4) at 37 °C. The functional exonuclease proofreading active site will increase fidelity by at least 10(2), making Dpo3 comparable to other DNA polymerases in this family. Additionally, Dpo3's exonuclease activity is modulated by temperature, where a loss of promiscuous degradation activity can be attributed to a reorganization of the exonuclease domain when it is bound to primer-template DNA at high temperatures. Unexpectedly, the DNA binding affinity is weak compared with those of other DNA polymerases of this family. A comparison of the fidelity, polymerization kinetics, and associated functional exonuclease domain with those previously reported for other Sso polymerases (Dpo1 and Dpo4) illustrates that Dpo3 is a potential player in the proper maintenance of the archaeal genome.

摘要

我们对来自嗜热古菌 Sulfolobus solfataricus(Sso)的第三代 B 族聚合酶(Dpo3)的聚合酶和外切酶活性进行了生化和动力学表征。通过突变,我们确定尽管序列不完全保守,但聚合酶和外切酶活性位点在 Dpo3 中在功能上是保守的。通过预稳态动力学,我们可以单独从聚合酶活性位点测量 Dpo3 核苷酸掺入的保真度,在 37°C 时为 10(3)-10(4)。功能外切酶校对活性位点至少将保真度提高 10(2),使 Dpo3 与该家族中的其他 DNA 聚合酶相当。此外,Dpo3 的外切酶活性受温度调节,当外切酶结构域与高温下的引物-模板 DNA 结合时,其无特异性降解活性的丧失可归因于其构象重排。出乎意料的是,与该家族中的其他 DNA 聚合酶相比,DNA 结合亲和力较弱。与先前报道的其他 Sso 聚合酶(Dpo1 和 Dpo4)的保真度、聚合动力学和相关功能外切酶结构域的比较表明,Dpo3 是正确维护古菌基因组的潜在参与者。

相似文献

1
Kinetics and fidelity of polymerization by DNA polymerase III from Sulfolobus solfataricus.
Biochemistry. 2012 Mar 6;51(9):1996-2007. doi: 10.1021/bi201799a. Epub 2012 Feb 27.
2
Roles of the four DNA polymerases of the crenarchaeon Sulfolobus solfataricus and accessory proteins in DNA replication.
J Biol Chem. 2011 Sep 9;286(36):31180-93. doi: 10.1074/jbc.M111.258038. Epub 2011 Jul 22.
6
7
8
10
Accurate DNA synthesis by Sulfolobus solfataricus DNA polymerase B1 at high temperature.
Extremophiles. 2010 Jan;14(1):107-17. doi: 10.1007/s00792-009-0292-9. Epub 2009 Dec 11.

引用本文的文献

1
A Well-Conserved Archaeal B-Family Polymerase Functions as an Extender in Translesion Synthesis.
mBio. 2022 Feb 22;13(1):e0265921. doi: 10.1128/mbio.02659-21. Epub 2022 Jan 18.
2
Enzymatic Switching Between Archaeal DNA Polymerases Facilitates Abasic Site Bypass.
Front Microbiol. 2021 Dec 20;12:802670. doi: 10.3389/fmicb.2021.802670. eCollection 2021.
3
PolB1 Is Sufficient for DNA Replication and Repair Under Normal Growth Conditions in the Extremely Thermophilic Crenarchaeon .
Front Microbiol. 2020 Dec 23;11:613375. doi: 10.3389/fmicb.2020.613375. eCollection 2020.
4
Diversity and evolution of B-family DNA polymerases.
Nucleic Acids Res. 2020 Oct 9;48(18):10142-10156. doi: 10.1093/nar/gkaa760.
5
A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota.
Front Microbiol. 2020 Jul 23;11:1585. doi: 10.3389/fmicb.2020.01585. eCollection 2020.
6
DNA Polymerases Divide the Labor of Genome Replication.
Trends Cell Biol. 2016 Sep;26(9):640-654. doi: 10.1016/j.tcb.2016.04.012. Epub 2016 Jun 1.
8
The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase.
PLoS One. 2016 Mar 8;11(3):e0150802. doi: 10.1371/journal.pone.0150802. eCollection 2016.
9
Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery.
Front Microbiol. 2014 Jul 21;5:354. doi: 10.3389/fmicb.2014.00354. eCollection 2014.

本文引用的文献

1
Structural insights into complete metal ion coordination from ternary complexes of B family RB69 DNA polymerase.
Biochemistry. 2011 Oct 25;50(42):9114-24. doi: 10.1021/bi201260h. Epub 2011 Sep 29.
2
Roles of the four DNA polymerases of the crenarchaeon Sulfolobus solfataricus and accessory proteins in DNA replication.
J Biol Chem. 2011 Sep 9;286(36):31180-93. doi: 10.1074/jbc.M111.258038. Epub 2011 Jul 22.
3
Phosphonoformic acid inhibits viral replication by trapping the closed form of the DNA polymerase.
J Biol Chem. 2011 Jul 15;286(28):25246-55. doi: 10.1074/jbc.M111.248864. Epub 2011 May 12.
4
The high fidelity and unique error signature of human DNA polymerase epsilon.
Nucleic Acids Res. 2011 Mar;39(5):1763-73. doi: 10.1093/nar/gkq1034. Epub 2010 Oct 29.
6
Characterization of a functional DnaG-type primase in archaea: implications for a dual-primase system.
J Mol Biol. 2010 Apr 2;397(3):664-76. doi: 10.1016/j.jmb.2010.01.057. Epub 2010 Feb 1.
8
A trimeric DNA polymerase complex increases the native replication processivity.
Nucleic Acids Res. 2009 Nov;37(21):7194-205. doi: 10.1093/nar/gkp767.
9
Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta.
Nat Struct Mol Biol. 2009 Sep;16(9):979-86. doi: 10.1038/nsmb.1663. Epub 2009 Aug 30.
10
Mechanism and evolution of DNA primases.
Biochim Biophys Acta. 2010 May;1804(5):1180-9. doi: 10.1016/j.bbapap.2009.06.011. Epub 2009 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验