Suppr超能文献

粗粒化建模黏液屏障特性。

Coarse-grained modeling of mucus barrier properties.

机构信息

Laboratory of Theory of Biopolymers, Faculty of Chemistry, University of Warsaw, Warsaw, Poland.

出版信息

Biophys J. 2012 Jan 18;102(2):195-200. doi: 10.1016/j.bpj.2011.11.4010.

Abstract

We designed a simple coarse-grained model of the glycocalyx layer, or adhesive mucus layer (AML), covered by mucus gel (luminal mucus layer) using a polymer lattice model and stochastic sampling (replica exchange Monte Carlo) for canonical ensemble simulations. We assumed that mucin MUC16 is responsible for the structural properties of the AML. Other mucins that are much smaller in size and less relevant for layer structure formation were not included. We further assumed that the system was in quasi-equilibrium. For systems with surface coverage and concentrations of model mucins mimicking physiological conditions, we determined the equilibrium distribution of inert nanoparticles within the mucus layers using an efficient replica exchange Monte Carlo sampling procedure. The results show that the two mucus layers penetrate each other only marginally, and the bilayer imposes a strong barrier for nanoparticles, with the AML layer playing a crucial role in the mucus barrier.

摘要

我们设计了一个简单的糖萼层(或粘性黏液层)的粗粒模型,该模型使用聚合物格子模型和正则系综模拟的随机采样(复制交换蒙特卡罗方法)来模拟覆盖在黏液凝胶(腔黏液层)上的糖萼层。我们假设黏蛋白 MUC16 负责 AML 的结构特性。其他尺寸小且对层结构形成不太重要的黏蛋白不包括在内。我们进一步假设系统处于准平衡状态。对于模拟生理条件的表面覆盖率和模型黏蛋白浓度的系统,我们使用有效的复制交换蒙特卡罗采样程序来确定惰性纳米颗粒在黏液层中的平衡分布。结果表明,两层黏液仅略有相互渗透,双层对纳米颗粒构成了强大的屏障,AML 层在黏液屏障中起着至关重要的作用。

相似文献

1
Coarse-grained modeling of mucus barrier properties.
Biophys J. 2012 Jan 18;102(2):195-200. doi: 10.1016/j.bpj.2011.11.4010.
2
Coarse-grained Monte Carlo simulations of mucus: structure, dynamics, and thermodynamics.
Biophys J. 2010 Dec 1;99(11):3507-16. doi: 10.1016/j.bpj.2010.09.047.
3
The properties of the mucus barrier, a unique gel--how can nanoparticles cross it?
Ther Deliv. 2016;7(4):229-44. doi: 10.4155/tde-2015-0002.
4
Undefined role of mucus as a barrier in ocular drug delivery.
Eur J Pharm Biopharm. 2015 Oct;96:442-6. doi: 10.1016/j.ejpb.2015.02.032. Epub 2015 Mar 12.
5
Mucins and the Microbiome.
Annu Rev Biochem. 2020 Jun 20;89:769-793. doi: 10.1146/annurev-biochem-011520-105053. Epub 2020 Apr 3.
6
Mucin Thin Layers: A Model for Mucus-Covered Tissues.
Int J Mol Sci. 2019 Jul 29;20(15):3712. doi: 10.3390/ijms20153712.
7
Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways.
Mucosal Immunol. 2013 Mar;6(2):379-92. doi: 10.1038/mi.2012.81. Epub 2012 Aug 29.
8
Lipid-based mucus penetrating nanoparticles and their biophysical interactions with pulmonary mucus layer.
Eur J Pharm Biopharm. 2020 Apr;149:45-57. doi: 10.1016/j.ejpb.2020.01.017. Epub 2020 Jan 31.
10
Perspectives on mucus properties and formation--lessons from the biochemical world.
Cold Spring Harb Perspect Med. 2012 Nov 1;2(11):a014159. doi: 10.1101/cshperspect.a014159.

引用本文的文献

1
The power of weak, transient interactions across biology: A paradigm of emergent behavior.
Physica D. 2023 Nov 15;454. doi: 10.1016/j.physd.2023.133866. Epub 2023 Aug 4.
3
A Bond-Fluctuation Model of Translational Dynamics of Chain-like Particles through Mucosal Scaffolds.
Biophys J. 2018 Jun 5;114(11):2732-2742. doi: 10.1016/j.bpj.2018.04.031.
4
5
Human conjunctival goblet cells express the membrane associated mucin MUC16: Localization to mucin granules.
Exp Eye Res. 2016 Apr;145:230-234. doi: 10.1016/j.exer.2015.12.009. Epub 2015 Dec 28.
7
Comparison of the transmembrane mucins MUC1 and MUC16 in epithelial barrier function.
PLoS One. 2014 Jun 26;9(6):e100393. doi: 10.1371/journal.pone.0100393. eCollection 2014.

本文引用的文献

1
Mucoadhesive nanoparticles may disrupt the protective human mucus barrier by altering its microstructure.
PLoS One. 2011;6(6):e21547. doi: 10.1371/journal.pone.0021547. Epub 2011 Jun 29.
2
Coarse-grained Monte Carlo simulations of mucus: structure, dynamics, and thermodynamics.
Biophys J. 2010 Dec 1;99(11):3507-16. doi: 10.1016/j.bpj.2010.09.047.
3
The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions.
Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1(Suppl 1):4659-65. doi: 10.1073/pnas.1006451107. Epub 2010 Jun 25.
4
Membrane-tethered mucins have multiple functions on the ocular surface.
Exp Eye Res. 2010 Jun;90(6):655-63. doi: 10.1016/j.exer.2010.02.014. Epub 2010 Mar 16.
5
Micro- and macrorheology of mucus.
Adv Drug Deliv Rev. 2009 Feb 27;61(2):86-100. doi: 10.1016/j.addr.2008.09.012. Epub 2009 Jan 3.
6
Barrier properties of mucus.
Adv Drug Deliv Rev. 2009 Feb 27;61(2):75-85. doi: 10.1016/j.addr.2008.09.008. Epub 2008 Dec 16.
7
Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues.
Adv Drug Deliv Rev. 2009 Feb 27;61(2):158-71. doi: 10.1016/j.addr.2008.11.002. Epub 2008 Dec 13.
8
Differential expression of MUC16 in human oral mucosal epithelium and cultivated epithelial sheets.
Exp Eye Res. 2008 Sep;87(3):191-6. doi: 10.1016/j.exer.2008.05.014. Epub 2008 Jul 21.
9
Architecture of the large membrane-bound mucins.
Gene. 2008 Mar 15;410(2):215-22. doi: 10.1016/j.gene.2007.12.014. Epub 2007 Dec 28.
10
Functions of MUC16 in corneal epithelial cells.
Invest Ophthalmol Vis Sci. 2007 Oct;48(10):4509-18. doi: 10.1167/iovs.07-0430.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验