Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4443-8. doi: 10.1073/pnas.1111305109. Epub 2012 Mar 8.
Wild-type, full-length (40- and 42-residue) amyloid β-peptide (Aβ) fibrils have been shown by a variety of magnetic resonance techniques to contain cross-β structures in which the β-sheets have an in-register parallel supramolecular organization. In contrast, recent studies of fibrils formed in vitro by the Asp23-to-Asn mutant of 40-residue Aβ (D23N-Aβ(1-40)), which is associated with early onset neurodegeneration, indicate that D23N-Aβ(1-40) fibrils can contain either parallel or antiparallel β-sheets. We report a protocol for producing structurally pure antiparallel D23N-Aβ(1-40) fibril samples and a series of solid state nuclear magnetic resonance and electron microscopy measurements that lead to a specific model for the antiparallel D23N-Aβ(1-40) fibril structure. This model reveals how both parallel and antiparallel cross-β structures can be constructed from similar peptide monomer conformations and stabilized by similar sets of interactions, primarily hydrophobic in nature. We find that antiparallel D23N-Aβ(1-40) fibrils are thermodynamically metastable with respect to conversion to parallel structures, propagate less efficiently than parallel fibrils in seeded fibril growth, and therefore must nucleate more efficiently than parallel fibrils in order to be observable. Experiments in neuronal cell cultures indicate that both antiparallel and parallel D23N-Aβ(1-40) fibrils are cytotoxic. Thus, our antiparallel D23N-Aβ(1-40) fibril model represents a specific "toxic intermediate" in the aggregation process of a disease-associated Aβ mutant.
野生型全长(40 个和 42 个残基)淀粉样β肽(Aβ)纤维已被多种磁共振技术证明含有交叉β结构,其中β-片层具有有序平行的超分子组织。相比之下,最近对由 40 个残基 Aβ的 Asp23 到 Asn 突变体(D23N-Aβ(1-40))体外形成的纤维的研究表明,D23N-Aβ(1-40)纤维可以包含平行或反平行β-片层。我们报告了一种生产结构纯反平行 D23N-Aβ(1-40)纤维样品的方案,以及一系列固态核磁共振和电子显微镜测量,这些测量导致了反平行 D23N-Aβ(1-40)纤维结构的特定模型。该模型揭示了如何从相似的肽单体构象构建平行和反平行的交叉β结构,并通过相似的相互作用(主要是疏水性)稳定,我们发现反平行 D23N-Aβ(1-40)纤维相对于平行结构的转化是热力学亚稳定的,在种子纤维生长中比平行纤维传播效率低,因此为了可观察到,必须比平行纤维更有效地成核。神经元细胞培养实验表明,反平行和平行 D23N-Aβ(1-40)纤维均具有细胞毒性。因此,我们的反平行 D23N-Aβ(1-40)纤维模型代表了与疾病相关的 Aβ突变体聚集过程中的特定“毒性中间体”。