Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States.
Biochemistry. 2012 May 1;51(17):3576-85. doi: 10.1021/bi300171s. Epub 2012 Apr 18.
Cyanobacteriochromes (CBCRs) are photosensory proteins related to the red/far-red phytochromes. Like phytochromes, CBCRs use linear tetrapyrrole (bilin) chromophores covalently attached via a thioether linkage to a conserved Cys residue also found in plant and cyanobacterial phytochromes. Unlike almost all phytochromes, CBCRs require only an isolated GAF domain to undergo efficient, reversible photocycles that are responsible for their broad light sensing range, spanning the visible to the near ultraviolet (UV). Sensing of blue, violet, and near-UV light by CBCRs requires another Cys residue proposed to form a second linkage to the bilin precursor. Light triggers 15,16-double bond isomerization as in phytochromes. After photoisomerization, elimination of the second linkage frequently occurs, thus yielding a large red shift of the stable photoproducts. Here we examine this process for representative DXCF CBCRs, a large subfamily named for the conserved Asp-Xaa-Cys-Phe motif that contains their second Cys residue. DXCF CBCRs with such dual-Cys photocycles yield a wide diversity of photoproducts absorbing teal, green, or orange light. Using a combination of CD spectroscopy, chemical modification, and bilin substitution experiments with recombinant CBCRs from Thermosynechococcus elongatus and Nostoc punctiforme expressed in Escherichia coli, we establish that second-linkage elimination is required for all of these photocycles. We also identify deconjugation of the D-ring as the mechanism for specific detection of teal light, at approximately 500 nm. Our studies thus provide new mechanistic insight into the photosensory versatility of this important family of photosensory proteins.
蓝藻细菌视紫红质(CBCRs)是与红/远红型光敏色素相关的光感蛋白。与光敏色素一样,CBCRs 使用通过硫醚键共价连接到保守半胱氨酸残基的线性四吡咯(bilin)发色团,该残基也存在于植物和蓝藻光敏色素中。与几乎所有的光敏色素不同,CBCRs 只需要一个分离的 GAF 结构域就能进行有效的、可逆的光循环,这是它们广泛的光感应范围的原因,从可见光到近紫外(UV)。CBCRs 对蓝光、紫光和近 UV 光的感应需要另一个半胱氨酸残基,该残基被提议与 bilin 前体形成第二个键。光触发与光敏色素中相同的 15,16-双键异构化。光异构化后,第二个键经常被消除,从而导致稳定光产物的红移较大。在这里,我们研究了代表性的 DXCF CBCRs 的这个过程,DXCF CBCRs 是一个大型亚家族,因其包含第二个半胱氨酸残基的保守 Asp-Xaa-Cys-Phe 基序而得名。具有这种双半胱氨酸光循环的 DXCF CBCRs 产生了广泛的光产物,吸收青绿色、绿色或橙色光。通过使用 Thermosynechococcus elongatus 和 Nostoc punctiforme 的重组 CBCRs 的 CD 光谱、化学修饰和 bilin 取代实验的组合,在大肠杆菌中表达,我们确定第二个键的消除是所有这些光循环所必需的。我们还确定了 D 环的去共轭化是特定检测青绿光(约 500nm)的机制。因此,我们的研究为这个重要的光感蛋白家族的光感应多功能性提供了新的机制见解。