Suppr超能文献

病毒纳米颗粒的开发用于高效的细胞内递送。

Development of viral nanoparticles for efficient intracellular delivery.

机构信息

Department of Cell Biology and Chemistry, Center for Integrative Molecular Biosciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

Nanoscale. 2012 Jun 7;4(11):3567-76. doi: 10.1039/c2nr30366c. Epub 2012 Apr 16.

Abstract

Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform that can target specific cells and tissues. VNPs such as CPMV show natural affinity to cells; however, cellular uptake is inefficient. Here we show that chemical modification of the CPMV surface with a highly reactive, specific and UV-traceable hydrazone linker allows bioconjugation of polyarginine (R5) cell penetrating peptides (CPPs), which can overcome these limitations. The resulting CPMV-R5 particles were taken up into a human cervical cancer cell line (HeLa) more efficiently than native particles. Uptake efficiency was dependent on the density of R5 peptides on the surface of the VNP; particles displaying 40 R5 peptides per CPMV (denoted as CPMV-R5H) interact strongly with the plasma membrane and are taken up into the cells via an energy-dependent mechanism whereas particles displaying 10 R5 peptides per CPMV (CPMV-R5L) are only slowly taken up. The fate of CPMV-R5 versus native CPMV particles within cells was evaluated in a co-localization time course study. It was indicated that the intracellular localization of CPMV-R5 and CPMV differs; CPMV remains trapped in Lamp-1 positive endolysosomes over long time frames; in contrast, 30-50% of the CPMV-R5 particles transitioned from the endosome into other cellular vesicles or compartments. Our data provide the groundwork for the development of efficient drug delivery formulations based on CPMV-R5.

摘要

基于植物病毒(如豇豆花叶病毒(CPMV))的病毒纳米颗粒(VNPs)可广泛应用于生物医学领域,因为它们提供了一个强大的支架,允许通过化学偶联和遗传修饰进行功能化,从而提供了一种有效的药物输送平台,可以靶向特定的细胞和组织。CPMV 等 VNPs 对细胞具有天然亲和力;然而,细胞摄取效率不高。在这里,我们展示了用高反应性、特异性和 UV 可追踪的腙连接子对 CPMV 表面进行化学修饰,允许聚精氨酸(R5)细胞穿透肽(CPP)的生物偶联,从而克服这些限制。与天然颗粒相比,所得的 CPMV-R5 颗粒更有效地被摄取到人类宫颈癌细胞系(HeLa)中。摄取效率取决于 R5 肽在 VNP 表面的密度;表面展示 40 个 R5 肽/CPMV(表示为 CPMV-R5H)的颗粒与质膜强烈相互作用,并通过能量依赖的机制被细胞摄取,而表面展示 10 个 R5 肽/CPMV(CPMV-R5L)的颗粒则被缓慢摄取。通过共定位时间过程研究评估了 CPMV-R5 与天然 CPMV 颗粒在细胞内的命运。结果表明,CPMV-R5 和 CPMV 在细胞内的定位不同;CPMV 长时间被困在 Lamp-1 阳性内溶酶体中;相比之下,30-50%的 CPMV-R5 颗粒从内体中转移到其他细胞小泡或隔室。我们的数据为基于 CPMV-R5 的高效药物输送制剂的开发提供了基础。

相似文献

1
Development of viral nanoparticles for efficient intracellular delivery.
Nanoscale. 2012 Jun 7;4(11):3567-76. doi: 10.1039/c2nr30366c. Epub 2012 Apr 16.
2
CPMV-DOX delivers.
Mol Pharm. 2013 Jan 7;10(1):3-10. doi: 10.1021/mp3002057. Epub 2012 Aug 6.
3
Viral nanoparticles for in vivo tumor imaging.
J Vis Exp. 2012 Nov 16(69):e4352. doi: 10.3791/4352.
5
Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo.
J Control Release. 2007 Jul 16;120(1-2):41-50. doi: 10.1016/j.jconrel.2007.04.003. Epub 2007 Apr 13.
6
Infusion of imaging and therapeutic molecules into the plant virus-based carrier cowpea mosaic virus: cargo-loading and delivery.
J Control Release. 2013 Dec 10;172(2):568-78. doi: 10.1016/j.jconrel.2013.04.023. Epub 2013 May 9.
7
Chemical addressability of ultraviolet-inactivated viral nanoparticles (VNPs).
PLoS One. 2008 Oct 2;3(10):e3315. doi: 10.1371/journal.pone.0003315.
8
Interior engineering of a viral nanoparticle and its tumor homing properties.
Biomacromolecules. 2012 Dec 10;13(12):3990-4001. doi: 10.1021/bm301278f. Epub 2012 Nov 14.
9
Endocytic uptake pathways utilized by CPMV nanoparticles.
Mol Pharm. 2013 Jan 7;10(1):26-32. doi: 10.1021/mp300238w. Epub 2012 Sep 20.

引用本文的文献

1
Cellular fate of a plant virus immunotherapy candidate.
Commun Biol. 2024 Oct 24;7(1):1382. doi: 10.1038/s42003-024-06982-0.
2
Preparation and Catalytic Properties of Carbonic Anhydrase Conjugated to Liposomes through a Bis-Aryl Hydrazone Bond.
ACS Omega. 2023 May 16;8(21):18637-18652. doi: 10.1021/acsomega.3c00551. eCollection 2023 May 30.
3
Genetically Engineered Viral Vectors and Organic-Based Non-Viral Nanocarriers for Drug Delivery Applications.
Adv Healthc Mater. 2022 Oct;11(20):e2201583. doi: 10.1002/adhm.202201583. Epub 2022 Aug 15.
4
Recent progress in targeted delivery vectors based on biomimetic nanoparticles.
Signal Transduct Target Ther. 2021 Jun 7;6(1):225. doi: 10.1038/s41392-021-00631-2.
6
7
Biomimetic Nanoparticle Vaccines for Cancer Therapy.
Adv Biosyst. 2019 Jan;3(1):e1800219. doi: 10.1002/adbi.201800219. Epub 2018 Nov 13.
8
The Utilization of Cell-Penetrating Peptides in the Intracellular Delivery of Viral Nanoparticles.
Materials (Basel). 2019 Aug 22;12(17):2671. doi: 10.3390/ma12172671.
9
Plant/Bacterial Virus-Based Drug Discovery, Drug Delivery, and Therapeutics.
Pharmaceutics. 2019 May 3;11(5):211. doi: 10.3390/pharmaceutics11050211.
10
Delivery of mitoxantrone using a plant virus-based nanoparticle for the treatment of glioblastomas.
J Mater Chem B. 2018 Oct 7;6(37):5888-5895. doi: 10.1039/C8TB01191E. Epub 2018 Sep 4.

本文引用的文献

1
Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing Peptide receptors.
Small. 2011 Jun 20;7(12):1664-72. doi: 10.1002/smll.201000435. Epub 2011 Apr 26.
2
Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells.
Nanomedicine (Lond). 2011 Feb;6(2):351-64. doi: 10.2217/nnm.10.136.
3
Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles.
Nat Protoc. 2010 Aug;5(8):1406-17. doi: 10.1038/nprot.2010.103. Epub 2010 Jul 8.
4
Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system.
Integr Biol (Camb). 2010 Jun;2(5-6):265-77. doi: 10.1039/c0ib00002g. Epub 2010 Jun 8.
5
Viral nanoparticles as platforms for next-generation therapeutics and imaging devices.
Nanomedicine. 2010 Oct;6(5):634-41. doi: 10.1016/j.nano.2010.04.005. Epub 2010 Apr 28.
6
Bisaryl hydrazones as exchangeable biocompatible linkers.
Angew Chem Int Ed Engl. 2010 Mar 8;49(11):2023-7. doi: 10.1002/anie.200906756.
9
Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation.
Angew Chem Int Ed Engl. 2009;48(52):9879-83. doi: 10.1002/anie.200905087.
10
Buckyballs meet viral nanoparticles: candidates for biomedicine.
J Am Chem Soc. 2009 Dec 2;131(47):17093-5. doi: 10.1021/ja902293w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验