Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
Curr Opin Neurobiol. 2012 Oct;22(5):791-8. doi: 10.1016/j.conb.2012.04.010. Epub 2012 May 2.
The migration of neurons along glial fibers from a germinal zone (GZ) to their final laminar positions is essential for morphogenesis of the developing brain; aberrations in this process are linked to profound neurodevelopmental and cognitive disorders. During this critical morphogenic movement, neurons must navigate complex migration paths, propelling their cell bodies through the dense cellular environment of the developing nervous system to their final destinations. It is not understood how neurons can successfully migrate along their glial guides through the myriad processes and cell bodies of neighboring neurons. Although much progress has been made in understanding the substrates (Fishell G, Hatten ME: Astrotactin provides a receptor system for CNS neuronal migration. Development 1991, 113:755; Elias LA, Wang DD, Kriegstein AR: Gap junction adhesion is necessary for radial migration in the neocortex. Nature 2007, 448:901; Anton ES, Kreidberg JA, Rakic P: Distinct functions of alpha3 and alpha. (v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron 1999, 22:277; Anton ES, Marchionni MA, Lee KF, Rakic P: Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 1997, 124:3501), guidance mechanisms (Polleux F, Whitford KL, Dijkhuizen PA, Vitalis T, Ghosh A: Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development 2002, 129:3147; Zhou P, et al.: Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors. Neuron 2007, 55:53; Renaud J, et al.: Plexin-A2 and its ligand, Sema6A, control nucleus-centrosome coupling in migrating granule cells. Nat Neurosci 2008, 11:440), cytoskeletal elements (Schaar BT, McConnell SK: Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci U S A 2005, 102:13652; Tsai JW, Bremner KH, Vallee RB: Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat Neurosci 2007, 10:970; Solecki DJ, et al.: Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration. Neuron 2009, 63:63), and post-translational modifications (Patrick GN, Zhou P, Kwon YT, Howley PM, Tsai LH: p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J Biol Chem 1998, 273:24057; Suetsugu S, et al.: Regulation of actin cytoskeleton by mDab1 through N-WASP and ubiquitination of mDab1. Biochem J 2004, 384:1; Karakuzu O, Wang DP, Cameron S: MIG-32 and SPAT-3A are PRC1 homologs that control neuronal migration inCaenorhabditis elegans. Development 2009, 136:943) required for neuronal migration, we have yet to elucidate how neurons regulate their cellular interactions and adhesive specificity to follow the appropriate migratory pathways. Here I will examine recent developments in our understanding of the mechanisms controlling neuronal cell adhesion and how these mechanisms interact with crucial neurodevelopmental events, such as GZ exit, migration pathway selection, multipolar-to-radial transition, and final lamination.
神经元沿着胶质纤维从生发区(GZ)迁移到它们最终的层状位置的过程对于大脑的形态发生是必不可少的;这个过程中的异常与深刻的神经发育和认知障碍有关。在这个关键的形态发生运动中,神经元必须沿着复杂的迁移路径导航,推动它们的细胞体穿过发育中神经系统的密集细胞环境,到达它们的最终目的地。目前还不清楚神经元如何能够沿着它们的神经胶质导向成功地迁移,穿过无数的过程和邻近神经元的细胞体。虽然在理解神经元迁移的基质(Fishell G,Hatten ME:Astrotactin 为中枢神经系统神经元迁移提供了受体系统。发育 1991,113:755;Elias LA,Wang DD,Kriegstein AR:缝隙连接粘附对于新皮层中的放射状迁移是必需的。自然 2007,448:901;Anton ES,Kreidberg JA,Rakic P:在神经元迁移和大脑皮层的层状组织中,alpha3 和 alpha.(v)整合素受体具有不同的功能。神经元 1999,22:277;Anton ES,Marchionni MA,Lee KF,Rakic P:在发育中的大脑皮层中,GGF/neuregulin 信号在迁移神经元和放射状胶质之间的相互作用中的作用。发育 1997,124:3501)、导向机制(Polleux F,Whitford KL,Dijkhuizen PA,Vitalis T,Ghosh A:神经生长因子和 PI3-激酶信号控制皮质中间神经元的迁移。发育 2002,129:3147;Zhou P,等:极化信号内体协调小脑前体细胞的 BDNF 诱导的趋化性。神经元 2007,55:53;Renaud J,等:Plexin-A2 和其配体 Sema6A 控制迁移颗粒细胞的核-中心体偶联。自然神经科学 2008,11:440)、细胞骨架元件(Schaar BT,McConnell SK:神经元迁移过程中的细胞骨架协调。Proc Natl Acad Sci U S A 2005,102:13652;Tsai JW,Bremner KH,Vallee RB:LIS1 和动力蛋白在活脑组织中放射状神经元迁移中的双重亚细胞作用。自然神经科学 2007,10:970;Solecki DJ,等:肌球蛋白 II 马达和 F-肌动蛋白动力学驱动中枢神经系统神经胶质引导的神经元迁移中中心体和体的协调运动。神经元 2009,63:63)和翻译后修饰(Patrick GN,Zhou P,Kwon YT,Howley PM,Tsai LH:神经元特异性激活蛋白激酶 5(Cdk5)的 p35,通过泛素-蛋白酶体途径降解。J Biol Chem 1998,273:24057;Suetsugu S,等:mDab1 通过 N-WASP 和 mDab1 的泛素化调节肌动蛋白细胞骨架。生物化学杂志 2004,384:1;Karakuzu O,Wang DP,Cameron S:MIG-32 和 SPAT-3A 是 PRC1 同源物,控制线虫中的神经元迁移。发育 2009,136:943),我们还没有阐明神经元如何调节它们的细胞间相互作用和粘附特异性,以遵循适当的迁移途径。在这里,我将研究我们对控制神经元细胞粘附的机制的理解的最新进展,以及这些机制如何与关键的神经发育事件相互作用,如 GZ 退出、迁移途径选择、多极到放射状过渡和最终分层。