Suppr超能文献

藻类金属转运的来龙去脉。

The ins and outs of algal metal transport.

作者信息

Blaby-Haas Crysten E, Merchant Sabeeha S

机构信息

Department of Chemistry, Box 951569, UCLA, Los Angeles, CA 90095‐1569, USA.

出版信息

Biochim Biophys Acta. 2012 Sep;1823(9):1531-52. doi: 10.1016/j.bbamcr.2012.04.010. Epub 2012 May 1.

Abstract

Metal transporters are a central component in the interaction of algae with their environment. They represent the first line of defense to cellular perturbations in metal concentration, and by analyzing algal metal transporter repertoires, we gain insight into a fundamental aspect of algal biology. The ability of individual algae to thrive in environments with unique geochemistry, compared to non-algal species commonly used as reference organisms for metal homeostasis, provides an opportunity to broaden our understanding of biological metal requirements, preferences and trafficking. Chlamydomonas reinhardtii is the best developed reference organism for the study of algal biology, especially with respect to metal metabolism; however, the diversity of algal niches necessitates a comparative genomic analysis of all sequenced algal genomes. A comparison between known and putative proteins in animals, plants, fungi and algae using protein similarity networks has revealed the presence of novel metal metabolism components in Chlamydomonas including new iron and copper transporters. This analysis also supports the concept that, in terms of metal metabolism, algae from similar niches are more related to one another than to algae from the same phylogenetic clade. This article is part of a Special Issue entitled: Cell Biology of Metals.

摘要

金属转运蛋白是藻类与其环境相互作用的核心组成部分。它们是应对金属浓度细胞扰动的第一道防线,通过分析藻类金属转运蛋白库,我们能够深入了解藻类生物学的一个基本方面。与通常用作金属稳态参考生物的非藻类物种相比,单个藻类在具有独特地球化学环境中茁壮成长的能力,为拓宽我们对生物金属需求、偏好和运输的理解提供了契机。莱茵衣藻是研究藻类生物学,特别是金属代谢方面最完善的参考生物;然而,藻类生态位的多样性需要对所有已测序的藻类基因组进行比较基因组分析。利用蛋白质相似性网络对动物、植物、真菌和藻类中已知和推测的蛋白质进行比较,揭示了莱茵衣藻中存在新的金属代谢成分,包括新的铁和铜转运蛋白。该分析还支持这样一种观点,即在金属代谢方面,来自相似生态位的藻类彼此之间的关系比来自同一系统发育分支的藻类更为密切。本文是名为《金属细胞生物学》特刊的一部分。

相似文献

1
The ins and outs of algal metal transport.
Biochim Biophys Acta. 2012 Sep;1823(9):1531-52. doi: 10.1016/j.bbamcr.2012.04.010. Epub 2012 May 1.
2
The metal transporter CrNRAMP1 is involved in zinc and cobalt transports in Chlamydomonas reinhardtii.
Biochem Biophys Res Commun. 2020 Mar 19;523(4):880-886. doi: 10.1016/j.bbrc.2019.12.121. Epub 2020 Jan 16.
4
Multi-genomic analysis of the cation diffusion facilitator transporters from algae.
Metallomics. 2020 Apr 1;12(4):617-630. doi: 10.1039/d0mt00009d. Epub 2020 Mar 20.
7
CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii.
Plant Sci. 2015 Nov;240:120-9. doi: 10.1016/j.plantsci.2015.09.004. Epub 2015 Sep 8.
10
Analysis of the high-affinity iron uptake system at the Chlamydomonas reinhardtii plasma membrane.
Eukaryot Cell. 2010 May;9(5):815-26. doi: 10.1128/EC.00310-09. Epub 2010 Mar 26.

引用本文的文献

1
Microbial metal physiology: ions to ecosystems.
Nat Rev Microbiol. 2025 Jul 25. doi: 10.1038/s41579-025-01213-7.
2
Insertional Mutagenesis as a Strategy to Open New Paths in Microalgal Molybdenum and Nitrate Homeostasis.
Curr Issues Mol Biol. 2025 May 26;47(6):396. doi: 10.3390/cimb47060396.
4
Moderate levels of dissolved iron stimulate cellular growth and increase lipid storage in Symbiodinium sp.
J Phycol. 2025 Jun;61(3):558-573. doi: 10.1111/jpy.70002. Epub 2025 Mar 30.
7
Toxicity, physiological response, and biosorption mechanism of to copper, lead, and cadmium.
Front Microbiol. 2024 Mar 28;15:1374275. doi: 10.3389/fmicb.2024.1374275. eCollection 2024.
8
The cadmium tolerance and bioaccumulation mechanism of sp. P1: insight from transcriptomics analysis.
Bioengineered. 2024 Dec;15(1):2314888. doi: 10.1080/21655979.2024.2314888. Epub 2024 Feb 20.
10
Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches.
ISME Commun. 2021 Mar 24;1(1):1. doi: 10.1038/s43705-021-00001-7.

本文引用的文献

2
Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability.
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):E317-25. doi: 10.1073/pnas.1118408109. Epub 2012 Jan 18.
3
The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins.
Proc Biol Sci. 2012 Jun 7;279(1736):2246-54. doi: 10.1098/rspb.2011.2301. Epub 2012 Feb 1.
4
The genome portal of the Department of Energy Joint Genome Institute.
Nucleic Acids Res. 2012 Jan;40(Database issue):D26-32. doi: 10.1093/nar/gkr947. Epub 2011 Nov 22.
5
Phytozome: a comparative platform for green plant genomics.
Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86. doi: 10.1093/nar/gkr944. Epub 2011 Nov 22.
6
Respiratory burst oxidases: the engines of ROS signaling.
Curr Opin Plant Biol. 2011 Dec;14(6):691-9. doi: 10.1016/j.pbi.2011.07.014. Epub 2011 Aug 19.
7
Rim2, a pyrimidine nucleotide exchanger, is needed for iron utilization in mitochondria.
Biochem J. 2011 Nov 15;440(1):137-46. doi: 10.1042/BJ20111036.
8
AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana.
Plant Cell Physiol. 2011 Aug;52(8):1433-42. doi: 10.1093/pcp/pcr089. Epub 2011 Jul 8.
9
The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana.
New Phytol. 2011 Oct;192(2):393-404. doi: 10.1111/j.1469-8137.2011.03798.x. Epub 2011 Jun 21.
10
The rice mitochondrial iron transporter is essential for plant growth.
Nat Commun. 2011;2:322. doi: 10.1038/ncomms1326.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验