Suppr超能文献

活体人眼中常规房水流出通道的可视化。

Visualization of the conventional outflow pathway in the living human eye.

机构信息

Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

出版信息

Ophthalmology. 2012 Aug;119(8):1563-8. doi: 10.1016/j.ophtha.2012.02.032. Epub 2012 Jun 8.

Abstract

PURPOSE

We sought to visualize the aqueous outflow system in 3 dimensions (3D) in living human eyes, and to investigate the use of commercially available spectral-domain optical coherence tomographic (SD-OCT) systems for this purpose.

DESIGN

Prospective, observational study.

PARTICIPANTS

One randomly determined eye in each of 6 normal healthy subjects was included.

TESTING

We performed 3D SD-OCT imaging of the aqueous humor outflow structures with 2 devices: The Cirrus HD-OCT and the Bioptigen SDOIS.

MAIN OUTCOME MEASURES

We created 3D virtual castings of Schlemm's canal (SC) and more distal outflow structures from scan data from each device.

RESULTS

Virtual casting of the SC provided visualization of more aqueous vessels branching from SC than could be located by interrogating the 2-dimensional (2D) image stack. Similarly, virtual casting of distal structures allowed visualization of large and small aqueous outflow channel networks that could not be appreciated with conventional 2D visualization.

CONCLUSIONS

The outflow pathways from SC to the superficial vasculature can be identified and tracked in living human eyes using commercially available SD-OCT.

摘要

目的

我们试图在活体人眼中可视化房水流出系统的三维(3D)结构,并研究商用谱域光学相干断层扫描(SD-OCT)系统在这方面的应用。

设计

前瞻性观察研究。

参与者

纳入 6 名正常健康受试者的每只随机确定的眼。

测试

我们使用 2 种设备对房水流出结构进行了 3D SD-OCT 成像:Cirrus HD-OCT 和 Bioptigen SDOIS。

主要观察指标

我们从每个设备的扫描数据中创建了 Schlemm 管(SC)和更远端流出结构的 3D 虚拟铸型。

结果

SC 的虚拟铸型提供了比通过询问二维(2D)图像堆栈所能定位的更多分支自 SC 的房水血管可视化。同样,远端结构的虚拟铸型允许可视化大的和小的房水流出通道网络,这是无法用传统的 2D 可视化来欣赏的。

结论

使用商用 SD-OCT 可以在活体人眼中识别和跟踪来自 SC 到浅层血管的流出途径。

相似文献

1
Visualization of the conventional outflow pathway in the living human eye.
Ophthalmology. 2012 Aug;119(8):1563-8. doi: 10.1016/j.ophtha.2012.02.032. Epub 2012 Jun 8.
2
3D visualization of aqueous humor outflow structures in-situ in humans.
Exp Eye Res. 2011 Sep;93(3):308-15. doi: 10.1016/j.exer.2011.03.019. Epub 2011 Apr 15.
3
In Vivo Identification of the Posttrabecular Aqueous Outflow Pathway Using Swept-Source Optical Coherence Tomography.
Invest Ophthalmol Vis Sci. 2016 Aug 1;57(10):4162-9. doi: 10.1167/iovs.16-19869.
5
Aqueous outflow regulation: Optical coherence tomography implicates pressure-dependent tissue motion.
Exp Eye Res. 2017 May;158:171-186. doi: 10.1016/j.exer.2016.06.007. Epub 2016 Jun 11.
6
Identification and assessment of Schlemm's canal by spectral-domain optical coherence tomography.
Invest Ophthalmol Vis Sci. 2010 Aug;51(8):4054-9. doi: 10.1167/iovs.09-4559. Epub 2010 Mar 17.
7
Morphometric analysis of aqueous humor outflow structures with spectral-domain optical coherence tomography.
Invest Ophthalmol Vis Sci. 2012 Aug 7;53(9):5198-207. doi: 10.1167/iovs.11-9229.
9
Visualization of conventional outflow tissue responses to netarsudil in living mouse eyes.
Eur J Pharmacol. 2016 Sep 15;787:20-31. doi: 10.1016/j.ejphar.2016.04.002. Epub 2016 Apr 13.
10
Evaluation of neural innervation in the human conventional outflow pathway distal to Schlemm's canal.
Exp Eye Res. 2022 Aug;221:109132. doi: 10.1016/j.exer.2022.109132. Epub 2022 May 27.

引用本文的文献

2
Clinical applications of aqueous angiography in glaucoma.
Indian J Ophthalmol. 2024 Jul 1;72(Suppl 4):S553-S560. doi: 10.4103/IJO.IJO_3220_23. Epub 2024 Apr 16.
3
Reduced Aqueous Humor Outflow Pathway Arborization in Childhood Glaucoma Eyes.
Transl Vis Sci Technol. 2024 Mar 1;13(3):23. doi: 10.1167/tvst.13.3.23.
5
Iridocorneal angle imaging of a human donor eye by spectral-domain optical coherence tomography.
Sci Rep. 2023 Aug 24;13(1):13861. doi: 10.1038/s41598-023-37248-0.
6
Circumferential (360°) trabeculotomy for steroid-induced glaucoma in adults.
Graefes Arch Clin Exp Ophthalmol. 2023 Jul;261(7):1987-1994. doi: 10.1007/s00417-023-06012-5. Epub 2023 Feb 21.
7
Canaloplasty in Pseudoexfoliation Glaucoma. Can It Still Be Considered a Good Choice?
J Clin Med. 2022 Apr 30;11(9):2532. doi: 10.3390/jcm11092532.
8
Evaluation of different OCT systems in quantitative imaging of human Schlemm's canal.
Sci Rep. 2022 Jan 26;12(1):1400. doi: 10.1038/s41598-022-05410-9.
9
Schlemm's canal: the outflow 'vessel'.
Acta Ophthalmol. 2022 Jun;100(4):e881-e890. doi: 10.1111/aos.15027. Epub 2021 Sep 13.

本文引用的文献

1
Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head.
Invest Ophthalmol Vis Sci. 2011 Sep 29;52(10):7738-48. doi: 10.1167/iovs.10-6925.
2
3D visualization of aqueous humor outflow structures in-situ in humans.
Exp Eye Res. 2011 Sep;93(3):308-15. doi: 10.1016/j.exer.2011.03.019. Epub 2011 Apr 15.
3
Advances in imaging the blood and aqueous vessels of the ocular limbus.
Exp Eye Res. 2010 Aug;91(2):118-26. doi: 10.1016/j.exer.2010.04.016. Epub 2010 May 4.
4
Identification and assessment of Schlemm's canal by spectral-domain optical coherence tomography.
Invest Ophthalmol Vis Sci. 2010 Aug;51(8):4054-9. doi: 10.1167/iovs.09-4559. Epub 2010 Mar 17.
6
The number of people with glaucoma worldwide in 2010 and 2020.
Br J Ophthalmol. 2006 Mar;90(3):262-7. doi: 10.1136/bjo.2005.081224.
7
Macular segmentation with optical coherence tomography.
Invest Ophthalmol Vis Sci. 2005 Jun;46(6):2012-7. doi: 10.1167/iovs.04-0335.
8
Clinical measurements of aqueous outflow.
Am J Ophthalmol. 1951 Nov;34(11):1603-5.
9
Detecting the inner and outer borders of the retinal nerve fiber layer using optical coherence tomography.
Graefes Arch Clin Exp Ophthalmol. 2002 May;240(5):362-71. doi: 10.1007/s00417-002-0461-3. Epub 2002 Apr 12.
10
Grayscale and proportion-corrected optical coherence tomography images.
Ophthalmic Surg Lasers. 2000 May-Jun;31(3):223-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验