Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London WC1N 3BG, United Kingdom.
J Neurosci. 2012 Jun 27;32(26):9000-6. doi: 10.1523/JNEUROSCI.0120-12.2012.
Sensory and motor systems interact closely during movement performance. Furthermore, proprioceptive feedback from ongoing movements provides an important input for successful learning of a new motor skill. Here, we show in humans that attention to proprioceptive input during a purely sensory task can influence subsequent learning of a novel motor task. We applied low-amplitude vibration to the abductor pollicis brevis (APB) muscle of eight healthy volunteers for 15 min while they discriminated either a small change in vibration frequency or the presence of a simultaneous weak cutaneous stimulus. Before and after the sensory attention tasks, we evaluated the following in separate experiments: (1) sensorimotor interaction in the motor cortex by testing the efficacy of proprioceptive input to reduce GABA(A)ergic intracortical inhibition using paired-pulse transcranial magnetic stimulation, and (2) how well the same subjects learned a ballistic thumb abduction task using the APB muscle. Performance of the vibration discrimination task increased the interaction of proprioceptive input with motor cortex excitability in the APB muscle, whereas performance in the cutaneous discrimination task had the opposite effect. There was a significant correlation between the integration of proprioceptive input in the motor cortex and the motor learning gain: increasing the integration of proprioceptive input from the APB increased the rate of motor learning and reduced performance variability, while decreasing proprioceptive integration had opposite effects. These findings suggest that the sensory attention tasks transiently change how proprioceptive input is integrated into the motor cortex and that these sensory changes drive subsequent learning behavior in the human motor cortex.
在运动表现过程中,感觉和运动系统密切交互。此外,来自正在进行的运动的本体感觉反馈为新运动技能的成功学习提供了重要的输入。在这里,我们在人类中表明,在纯粹的感觉任务中注意本体感觉输入可以影响随后对新运动任务的学习。我们在八名健康志愿者的外展拇指短肌 (APB) 上施加了 15 分钟的低幅度振动,同时他们分别区分振动频率的微小变化或同时存在的微弱皮肤刺激。在感觉注意任务之前和之后,我们在单独的实验中评估了以下内容:(1)使用成对脉冲经颅磁刺激测试本体感觉输入减少 GABA(A) 能皮质内抑制的功效,从而评估运动皮层中的感觉运动相互作用,(2)相同的受试者使用 APB 肌肉学习弹道拇指外展任务的效果如何。振动辨别任务的表现增加了本体感觉输入与 APB 肌肉运动皮层兴奋性的相互作用,而皮肤辨别任务的表现则产生了相反的效果。运动皮层中本体感觉输入的整合与运动学习增益之间存在显著相关性:增加来自 APB 的本体感觉输入的整合会增加运动学习的速度并减少性能变异性,而减少本体感觉整合则会产生相反的效果。这些发现表明,感觉注意任务会暂时改变本体感觉输入如何整合到运动皮层中,并且这些感觉变化会驱动人类运动皮层中随后的学习行为。