Suppr超能文献

细胞外的乳酸水平,而不是氧气水平,反映了大鼠大脑皮层的睡眠稳态。

Extracellular levels of lactate, but not oxygen, reflect sleep homeostasis in the rat cerebral cortex.

机构信息

Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Sleep. 2012 Jul 1;35(7):909-19. doi: 10.5665/sleep.1950.

Abstract

STUDY OBJECTIVE

It is well established that brain metabolism is higher during wake and rapid eye movement (REM) sleep than in nonrapid eye movement (NREM) sleep. Most of the brain's energy is used to maintain neuronal firing and glutamatergic transmission. Recent evidence shows that cortical firing rates, extracellular glutamate levels, and markers of excitatory synaptic strength increase with time spent awake and decline throughout NREM sleep. These data imply that the metabolic cost of each behavioral state is not fixed but may reflect sleep-wake history, a possibility that is investigated in the current report.

DESIGN

Chronic (4d) electroencephalographic (EEG) recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of oxygen ([oxy]) and lactate ([lac]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to sleep deprivation.

SETTING

Basic sleep research laboratory.

PATIENTS OR PARTICIPANTS

Wistar Kyoto (WKY) adult male rats.

INTERVENTIONS

N/A.

MEASUREMENTS AND RESULTS

Within 30-60 sec [lac] and [oxy] progressively increased during wake and REM sleep and declined during NREM sleep (n = 10 rats/metabolite), but with several differences. [Oxy], but not [lac], increased more during wake with high motor activity and/or elevated EEG high-frequency power. Meanwhile, only the NREM decline of [lac] reflected sleep pressure as measured by slow-wave activity, mirroring previous results for cortical glutamate.

CONCLUSIONS

The observed state-dependent changes in cortical [lac] and [oxy] are consistent with higher brain metabolism during waking and REM sleep in comparison with NREM sleep. Moreover, these data suggest that glycolytic activity, most likely through its link with glutamatergic transmission, reflects sleep homeostasis.

摘要

研究目的

众所周知,大脑代谢在觉醒和快速眼动(REM)睡眠期间高于非快速眼动(NREM)睡眠。大脑的大部分能量用于维持神经元放电和谷氨酸能传递。最近的证据表明,皮质放电率、细胞外谷氨酸水平和兴奋性突触强度的标志物随着清醒时间的增加而增加,并在整个 NREM 睡眠期间下降。这些数据表明,每个行为状态的代谢成本不是固定的,而是可能反映睡眠-觉醒史,这是当前报告中研究的一个可能性。

设计

在大鼠大脑皮层进行慢性(4d)脑电图(EEG)记录,并结合固定电位安培法监测细胞外氧([oxy])和乳酸([lac])浓度在自发睡眠-觉醒周期中的秒级变化,以及在睡眠剥夺时的变化。

地点

基础睡眠研究实验室。

患者或参与者

Wistar Kyoto(WKY)成年雄性大鼠。

干预

无。

测量和结果

在觉醒和 REM 睡眠期间,[lac]和[oxy]在 30-60 秒内逐渐增加,在 NREM 睡眠期间下降(n = 10 只大鼠/代谢物),但有几个差异。[oxy],但不是[lac],在高运动活动和/或 EEG 高频功率升高时在觉醒期间增加更多。同时,只有 NREM 睡眠期间[lac]的下降反映了慢波活动测量的睡眠压力,反映了皮质谷氨酸的先前结果。

结论

观察到的皮质[lac]和[oxy]的状态依赖性变化与觉醒和 REM 睡眠期间大脑代谢高于 NREM 睡眠一致。此外,这些数据表明,糖酵解活性,很可能通过其与谷氨酸能传递的联系,反映了睡眠稳态。

相似文献

2
Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states.
J Neurosci. 2009 Jan 21;29(3):620-9. doi: 10.1523/JNEUROSCI.5486-08.2009.
3
Sleep/wake dependent changes in cortical glucose concentrations.
J Neurochem. 2013 Jan;124(1):79-89. doi: 10.1111/jnc.12063. Epub 2012 Nov 15.

引用本文的文献

1
Sleep phenotyping in a rat model of susceptibility to substance use disorders.
PLoS One. 2025 May 29;20(5):e0324459. doi: 10.1371/journal.pone.0324459. eCollection 2025.
2
A ketogenic diet decreases sevoflurane-induced burst suppression in rats.
Brain Res Bull. 2025 Apr;223:111274. doi: 10.1016/j.brainresbull.2025.111274. Epub 2025 Feb 24.
6
Noradrenergic Signaling in Astrocytes Influences Mammalian Sleep Homeostasis.
Clocks Sleep. 2022 Jul 7;4(3):332-345. doi: 10.3390/clockssleep4030028.
7
Neurotransmitter Release of Reprogrammed Cells Using Electrochemical Detection Methods.
Methods Mol Biol. 2021;2352:201-226. doi: 10.1007/978-1-0716-1601-7_14.
8
The why and how of sleep-dependent synaptic down-selection.
Semin Cell Dev Biol. 2022 May;125:91-100. doi: 10.1016/j.semcdb.2021.02.007. Epub 2021 Mar 10.
9
Persistent changes in extracellular lactate dynamics following synaptic potentiation.
Neurobiol Learn Mem. 2020 Nov;175:107314. doi: 10.1016/j.nlm.2020.107314. Epub 2020 Sep 20.
10
The Interaction Between Sleep and Metabolism in Alzheimer's Disease: Cause or Consequence of Disease?
Front Aging Neurosci. 2019 Sep 20;11:258. doi: 10.3389/fnagi.2019.00258. eCollection 2019.

本文引用的文献

1
Sleep and synaptic homeostasis: structural evidence in Drosophila.
Science. 2011 Jun 24;332(6037):1576-81. doi: 10.1126/science.1202839.
2
Local sleep in awake rats.
Nature. 2011 Apr 28;472(7344):443-7. doi: 10.1038/nature10009.
3
Fast and reversible stimulation of astrocytic glycolysis by K+ and a delayed and persistent effect of glutamate.
J Neurosci. 2011 Mar 23;31(12):4709-13. doi: 10.1523/JNEUROSCI.5311-10.2011.
4
A postsleep decline in auditory evoked potential amplitude reflects sleep homeostasis.
Clin Neurophysiol. 2011 Aug;122(8):1549-55. doi: 10.1016/j.clinph.2011.01.041. Epub 2011 Mar 21.
5
Removal of synaptic Ca²+-permeable AMPA receptors during sleep.
J Neurosci. 2011 Mar 16;31(11):3953-61. doi: 10.1523/JNEUROSCI.3210-10.2011.
6
Astrocyte-neuron lactate transport is required for long-term memory formation.
Cell. 2011 Mar 4;144(5):810-23. doi: 10.1016/j.cell.2011.02.018.
8
Adenosine, energy metabolism and sleep homeostasis.
Sleep Med Rev. 2011 Apr;15(2):123-35. doi: 10.1016/j.smrv.2010.06.005. Epub 2010 Oct 20.
10
Invariance of firing rate and field potential dynamics to stimulus modulation rate in human auditory cortex.
Hum Brain Mapp. 2011 Aug;32(8):1181-93. doi: 10.1002/hbm.21100. Epub 2010 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验