Suppr超能文献

昆虫的初级和次级细菌共生体之间的基因组缩减和共同进化。

Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids.

机构信息

Department of Ecology and Evolutionary Biology, Yale University, USA.

出版信息

Mol Biol Evol. 2012 Dec;29(12):3781-92. doi: 10.1093/molbev/mss180. Epub 2012 Jul 19.

Abstract

Genome reduction in obligately intracellular bacteria is one of the most well-established patterns in the field of molecular evolution. In the extreme, many sap-feeding insects harbor nutritional symbionts with genomes that are so reduced that it is not clear how they perform basic cellular functions. For example, the primary symbiont of psyllids (Carsonella) maintains one of the smallest and most AT-rich bacterial genomes ever identified and has surprisingly lost many genes that are thought to be essential for its role in provisioning its host with amino acids. However, our understanding of this extreme case of genome reduction is limited, as genomic data for Carsonella are available from only a single host species, and little is known about the functional role of "secondary" bacterial symbionts in psyllids. To address these limitations, we analyzed complete Carsonella genomes from pairs of congeneric hosts in three divergent genera within the Psyllidae (Ctenarytaina, Heteropsylla, and Pachypsylla) as well as complete secondary symbiont genomes from two of these host species (Ctenarytaina eucalypti and Heteropsylla cubana). Although the Carsonella genomes are generally conserved in size, structure, and GC content and exhibit genome-wide signatures of purifying selection, we found that gene loss has remained active since the divergence of the host species and had a particularly large impact on the amino acid biosynthesis pathways that define the symbiotic role of Carsonella. In some cases, the presence of additional bacterial symbionts may compensate for gene loss in Carsonella, as functional gene content indicates a high degree of metabolic complementarity between co-occurring symbionts. The genomes of the secondary symbionts also show signatures of long-term evolution as vertically transmitted, intracellular bacteria, including more extensive genome reduction than typically observed in facultative symbionts. Therefore, a history of co-evolution with secondary bacterial symbionts can partially explain the ongoing genome reduction in Carsonella. However, the absence of these secondary symbionts in other host lineages indicates that the relationships are dynamic and that other mechanisms, such as changes in host diet or functional coordination with the host genome, must also be at play.

摘要

专性细胞内细菌的基因组缩减是分子进化领域中最确立的模式之一。在极端情况下,许多吸食汁液的昆虫体内都有营养共生体,它们的基因组非常小,以至于不清楚它们如何执行基本的细胞功能。例如,粉虱(Carsonella)的主要共生菌拥有迄今为止发现的最小和最富含 A-T 的细菌基因组之一,令人惊讶的是,它失去了许多被认为对其为宿主提供氨基酸功能至关重要的基因。然而,由于只有单一宿主物种的基因组数据可用于 Carsonella,因此我们对这种极端的基因组缩减情况的了解有限,并且对粉虱中“次要”细菌共生体的功能作用知之甚少。为了解决这些限制,我们分析了三个不同的粉虱科属(Ctenarytaina、Heteropsylla 和 Pachypsylla)中同源宿主对的完整 Carsonella 基因组,以及这两个宿主物种(Ctenarytaina eucalypti 和 Heteropsylla cubana)中的完整次要共生体基因组。尽管 Carsonella 基因组在大小、结构和 GC 含量上通常保持保守,并且表现出全基因组范围内的净化选择特征,但我们发现,自宿主物种分化以来,基因丢失仍然活跃,并对定义 Carsonella 共生作用的氨基酸生物合成途径产生了特别大的影响。在某些情况下,额外的细菌共生体的存在可能会弥补 Carsonella 中的基因丢失,因为功能基因含量表明共生体之间存在高度的代谢互补性。次要共生体的基因组也表现出作为垂直传播的、专性细胞内细菌的长期进化特征,包括比通常在兼性共生体中观察到的更广泛的基因组缩减。因此,与次要细菌共生体的共同进化历史可以部分解释 Carsonella 中持续的基因组缩减。然而,在其他宿主谱系中缺乏这些次要共生体表明这些关系是动态的,并且必须存在其他机制,例如宿主饮食的变化或与宿主基因组的功能协调。

相似文献

1
Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids.
Mol Biol Evol. 2012 Dec;29(12):3781-92. doi: 10.1093/molbev/mss180. Epub 2012 Jul 19.
3
4
Differential genome evolution between companion symbionts in an insect-bacterial symbiosis.
mBio. 2014 Sep 30;5(5):e01697-14. doi: 10.1128/mBio.01697-14.
7
Convergent evolution of metabolic roles in bacterial co-symbionts of insects.
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15394-9. doi: 10.1073/pnas.0906424106. Epub 2009 Aug 24.

引用本文的文献

2
Metrics of Genomic Complexity in the Evolution of Bacterial Endosymbiosis.
Biology (Basel). 2025 Mar 25;14(4):338. doi: 10.3390/biology14040338.
3
Origin and function of beneficial bacterial symbioses in insects.
Nat Rev Microbiol. 2025 Mar 27. doi: 10.1038/s41579-025-01164-z.
4
A dual insect symbiont and plant pathogen improves insect host fitness under arginine limitation.
mBio. 2025 Apr 9;16(4):e0358824. doi: 10.1128/mbio.03588-24. Epub 2025 Feb 25.
5
Complete genome of the mutualistic symbiont " Carsonella ruddii" from a Japanese island strain of the Asian citrus psyllid .
Microbiol Resour Announc. 2025 Apr 10;14(4):e0108224. doi: 10.1128/mra.01082-24. Epub 2025 Feb 25.

本文引用的文献

1
Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2.
Bioinformatics. 2012 Apr 1;28(7):1033-4. doi: 10.1093/bioinformatics/bts079. Epub 2012 Feb 12.
2
Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates.
PLoS Biol. 2012 Jan;10(1):e1001241. doi: 10.1371/journal.pbio.1001241. Epub 2012 Jan 17.
3
The Pfam protein families database.
Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301. doi: 10.1093/nar/gkr1065. Epub 2011 Nov 29.
4
Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont.
PLoS Genet. 2011 Nov;7(11):e1002357. doi: 10.1371/journal.pgen.1002357. Epub 2011 Nov 10.
5
Extreme genome reduction in symbiotic bacteria.
Nat Rev Microbiol. 2011 Nov 8;10(1):13-26. doi: 10.1038/nrmicro2670.
6
Accelerated Profile HMM Searches.
PLoS Comput Biol. 2011 Oct;7(10):e1002195. doi: 10.1371/journal.pcbi.1002195. Epub 2011 Oct 20.
7
Dynamics of genome evolution in facultative symbionts of aphids.
Environ Microbiol. 2010 Aug;12(8):2060-9. doi: 10.1111/j.1462-2920.2009.02085.x. Epub 2009 Oct 16.
8
An interdependent metabolic patchwork in the nested symbiosis of mealybugs.
Curr Biol. 2011 Aug 23;21(16):1366-72. doi: 10.1016/j.cub.2011.06.051. Epub 2011 Aug 11.
10
Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries.
Genome Biol. 2011;12(2):R18. doi: 10.1186/gb-2011-12-2-r18. Epub 2011 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验