Suppr超能文献

使用质子磁共振波谱和功能磁共振成像对精神分裂症患者的海马体进行多模态分析。

Multimodal analysis of the hippocampus in schizophrenia using proton magnetic resonance spectroscopy and functional magnetic resonance imaging.

机构信息

Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.

出版信息

Schizophr Res. 2012 Sep;140(1-3):136-42. doi: 10.1016/j.schres.2012.06.039. Epub 2012 Jul 23.

Abstract

BACKGROUND

Studies have shown that individuals with schizophrenia suffer from memory impairments. In this study, we combined proton magnetic resonance spectroscopy (¹H-MRS) and functional magnetic resonance imaging (fMRI) to clarify the neurobiology of memory deficits in schizophrenia.

METHODS

We used single-voxel MRS acquired in the left hippocampus and fMRI during performance of a memory task to obtain measures of neurochemistry and functional response in 28 stable, medicated participants with schizophrenia (SZ) and 28 matched healthy controls (HC).

RESULTS

The SZ group had significantly decreased blood oxygen level-dependent (BOLD) signal in left inferior frontal gyrus (IFG) during encoding and in the anterior cingulate cortex (ACC) and superior temporal gyrus (STG) during retrieval. We did not find significant differences in N-acetylaspartate/creatine (NAA/Cr) or glutamate+glutamine (Glx/Cr) levels between the groups, but did find a significant positive correlation between NAA/Cr and Glx/Cr in the HC group that was absent in the SZ group. There were no significant correlations between BOLD and MRS measured in the hippocampus. Further analyses revealed a negative correlation between left IFG BOLD and task performance in the SZ group. Finally, in the HC group, the left IFG BOLD was positively correlated with Glx/Cr.

CONCLUSIONS

We replicated findings of reduced BOLD signal in left IFG and of an altered relationship between IFG BOLD response and task performance in the SZ. The absence of correlation between NAA/Cr and Glx/Cr levels in patients might suggest underlying pathologies of the glutamate-glutamine cycle and/or mitochondria.

摘要

背景

研究表明精神分裂症患者存在记忆损伤。在本研究中,我们结合质子磁共振波谱(¹H-MRS)和功能磁共振成像(fMRI)来阐明精神分裂症记忆缺陷的神经生物学机制。

方法

我们使用单体素 MRS 检测左侧海马和记忆任务期间的 fMRI,以获得 28 名稳定、用药的精神分裂症患者(SZ)和 28 名匹配的健康对照(HC)的神经化学和功能反应的测量值。

结果

SZ 组在编码期间的左侧额下回(IFG)和检索期间的前扣带皮层(ACC)和颞上回(STG)的血氧水平依赖(BOLD)信号明显降低。我们没有发现两组间 N-乙酰天冬氨酸/肌酸(NAA/Cr)或谷氨酸+谷氨酰胺(Glx/Cr)水平有显著差异,但在 HC 组中发现 NAA/Cr 与 Glx/Cr 之间存在显著正相关,而在 SZ 组中则不存在。BOLD 与海马体 MRS 测量值之间没有显著相关性。进一步的分析表明,SZ 组左侧 IFG 的 BOLD 与任务表现呈负相关。最后,在 HC 组中,左侧 IFG 的 BOLD 与 Glx/Cr 呈正相关。

结论

我们复制了左侧 IFG 的 BOLD 信号减少和 SZ 中 IFG 的 BOLD 反应与任务表现之间的关系改变的发现。患者中 NAA/Cr 与 Glx/Cr 水平之间无相关性可能提示谷氨酰胺-谷氨酸循环和/或线粒体的潜在病理。

相似文献

2
Assessments of function and biochemistry of the anterior cingulate cortex in schizophrenia.
Biol Psychiatry. 2010 Oct 1;68(7):625-33. doi: 10.1016/j.biopsych.2010.04.013. Epub 2010 Jun 8.
3
Decoupling of N-acetyl-aspartate and glutamate within the dorsolateral prefrontal cortex in schizophrenia.
Curr Mol Med. 2015;15(2):176-83. doi: 10.2174/1566524015666150303104811.
4
Regional decoupling of N-acetyl-aspartate and glutamate in schizophrenia.
Neuropsychopharmacology. 2012 Nov;37(12):2635-42. doi: 10.1038/npp.2012.126. Epub 2012 Jul 18.
5
Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia.
JAMA Psychiatry. 2013 Dec;70(12):1294-302. doi: 10.1001/jamapsychiatry.2013.2437.
6
Neural Signatures of Memory Encoding in Schizophrenia Are Modulated by Antipsychotic Treatment.
Neuropsychobiology. 2021;80(1):12-24. doi: 10.1159/000506402. Epub 2020 Apr 21.
8
Proton magnetic resonance spectroscopy of the substantia nigra in schizophrenia.
Schizophr Res. 2013 Jul;147(2-3):348-54. doi: 10.1016/j.schres.2013.04.036. Epub 2013 May 21.
9
Brain metabolite alterations in young adults at familial high risk for schizophrenia using proton magnetic resonance spectroscopy.
Schizophr Res. 2013 Aug;148(1-3):59-66. doi: 10.1016/j.schres.2013.05.024. Epub 2013 Jun 20.
10
A combined diffusion tensor imaging and magnetic resonance spectroscopy study of patients with schizophrenia.
Schizophr Res. 2016 Feb;170(2-3):341-50. doi: 10.1016/j.schres.2015.12.003. Epub 2015 Dec 21.

引用本文的文献

2
Excitatory and inhibitory imbalances in the trisynaptic pathway in the hippocampus in schizophrenia: a postmortem ultrastructural study.
J Neural Transm (Vienna). 2023 Jul;130(7):949-965. doi: 10.1007/s00702-023-02650-5. Epub 2023 May 16.
3
Hippocampal Hyperconnectivity to the Visual Cortex Predicts Treatment Response.
Schizophr Bull. 2023 May 3;49(3):605-613. doi: 10.1093/schbul/sbac213.
4
Higher glutamatergic activity in the medial prefrontal cortex in chronic ketamine users.
J Psychiatry Neurosci. 2022 Jul 26;47(4):E263-E271. doi: 10.1503/jpn.210179. Print 2022 Jul-Aug.
5
A multimodal neuroimaging study investigating resting-state connectivity, glutamate and GABA at 7 T in first-episode psychosis.
J Psychiatry Neurosci. 2021 Dec 21;46(6):E702-E710. doi: 10.1503/jpn.210107. Print 2021 Nov-Dec.
6
Mnemonic Discrimination Deficits in First-Episode Psychosis and a Ketamine Model Suggest Dentate Gyrus Pathology Linked to NMDA Receptor Hypofunction.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2021 Dec;6(12):1185-1192. doi: 10.1016/j.bpsc.2021.09.008. Epub 2021 Oct 12.
9
Neuroimaging as a Window Into the Pathophysiological Mechanisms of Schizophrenia.
Front Psychiatry. 2021 Mar 11;12:613764. doi: 10.3389/fpsyt.2021.613764. eCollection 2021.
10
GABA, Glutamate and Neural Activity: A Systematic Review With Meta-Analysis of Multimodal H-MRS-fMRI Studies.
Front Psychiatry. 2021 Mar 8;12:644315. doi: 10.3389/fpsyt.2021.644315. eCollection 2021.

本文引用的文献

1
Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia.
Biol Psychiatry. 2011 May 15;69(10):980-8. doi: 10.1016/j.biopsych.2011.01.010. Epub 2011 Mar 11.
2
Proton magnetic resonance spectroscopy and illness stage in schizophrenia--a systematic review and meta-analysis.
Biol Psychiatry. 2011 Mar 1;69(5):495-503. doi: 10.1016/j.biopsych.2010.10.004. Epub 2010 Dec 8.
3
Anterior cingulate and cerebellar GABA and Glu correlations measured by ¹H J-difference spectroscopy.
Magn Reson Imaging. 2011 Jan;29(1):19-24. doi: 10.1016/j.mri.2010.07.005. Epub 2010 Sep 29.
4
Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia.
Int J Dev Neurosci. 2011 May;29(3):311-24. doi: 10.1016/j.ijdevneu.2010.08.007. Epub 2010 Sep 15.
5
The hippocampal formation in schizophrenia.
Am J Psychiatry. 2010 Oct;167(10):1178-93. doi: 10.1176/appi.ajp.2010.09081187. Epub 2010 Sep 1.
6
Assessments of function and biochemistry of the anterior cingulate cortex in schizophrenia.
Biol Psychiatry. 2010 Oct 1;68(7):625-33. doi: 10.1016/j.biopsych.2010.04.013. Epub 2010 Jun 8.
9
Prefrontal activation deficits during episodic memory in schizophrenia.
Am J Psychiatry. 2009 Aug;166(8):863-74. doi: 10.1176/appi.ajp.2009.08091307. Epub 2009 May 1.
10
Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia.
Dev Psychopathol. 2008 Fall;20(4):1297-327. doi: 10.1017/S095457940800062X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验