Suppr超能文献

斑马鱼幼体中播散性念珠菌病的无创成像

Non-invasive imaging of disseminated candidiasis in zebrafish larvae.

作者信息

Brothers Kimberly M, Wheeler Robert T

机构信息

Department of Molecular and Biomedical Sciences, University of Maine.

出版信息

J Vis Exp. 2012 Jul 30(65):4051. doi: 10.3791/4051.

Abstract

Disseminated candidiasis caused by the pathogen Candida albicans is a clinically important problem in hospitalized individuals and is associated with a 30 to 40% attributable mortality(6). Systemic candidiasis is normally controlled by innate immunity, and individuals with genetic defects in innate immune cell components such as phagocyte NADPH oxidase are more susceptible to candidemia(7-9). Very little is known about the dynamics of C. albicans interaction with innate immune cells in vivo. Extensive in vitro studies have established that outside of the host C. albicans germinates inside of macrophages, and is quickly destroyed by neutrophils(10-14). In vitro studies, though useful, cannot recapitulate the complex in vivo environment, which includes time-dependent dynamics of cytokine levels, extracellular matrix attachments, and intercellular contacts(10, 15-18). To probe the contribution of these factors in host-pathogen interaction, it is critical to find a model organism to visualize these aspects of infection non-invasively in a live intact host. The zebrafish larva offers a unique and versatile vertebrate host for the study of infection. For the first 30 days of development zebrafish larvae have only innate immune defenses(2, 19-21), simplifying the study of diseases such as disseminated candidiasis that are highly dependent on innate immunity. The small size and transparency of zebrafish larvae enable imaging of infection dynamics at the cellular level for both host and pathogen. Transgenic larvae with fluorescing innate immune cells can be used to identify specific cells types involved in infection(22-24). Modified anti-sense oligonucleotides (Morpholinos) can be used to knock down various immune components such as phagocyte NADPH oxidase and study the changes in response to fungal infection(5). In addition to the ethical and practical advantages of using a small lower vertebrate, the zebrafish larvae offers the unique possibility to image the pitched battle between pathogen and host both intravitally and in color. The zebrafish has been used to model infection for a number of human pathogenic bacteria, and has been instrumental in major advances in our understanding of mycobacterial infection(3, 25). However, only recently have much larger pathogens such as fungi been used to infect larva(5, 23, 26), and to date there has not been a detailed visual description of the infection methodology. Here we present our techniques for hindbrain ventricle microinjection of prim(25) zebrafish, including our modifications to previous protocols. Our findings using the larval zebrafish model for fungal infection diverge from in vitro studies and reinforce the need to examine the host-pathogen interaction in the complex environment of the host rather than the simplified system of the Petri dish(5).

摘要

由病原菌白色念珠菌引起的播散性念珠菌病是住院患者临床上的一个重要问题,其归因死亡率为30%至40%(6)。系统性念珠菌病通常由先天免疫控制,先天免疫细胞成分(如吞噬细胞NADPH氧化酶)存在基因缺陷的个体更容易发生念珠菌血症(7 - 9)。关于白色念珠菌在体内与先天免疫细胞相互作用的动态过程,人们了解甚少。广泛的体外研究表明,在宿主体外,白色念珠菌在巨噬细胞内发芽,并很快被中性粒细胞破坏(10 - 14)。体外研究虽然有用,但无法重现复杂的体内环境,体内环境包括细胞因子水平的时间依赖性动态变化、细胞外基质附着以及细胞间接触(10, 15 - 18)。为了探究这些因素在宿主 - 病原体相互作用中的作用,找到一种模式生物以在完整的活体宿主中无创地观察感染的这些方面至关重要。斑马鱼幼体为感染研究提供了一种独特且通用的脊椎动物宿主。在发育的前30天,斑马鱼幼体仅具有先天免疫防御(2, 19 - 21),这简化了对高度依赖先天免疫的疾病(如播散性念珠菌病)的研究。斑马鱼幼体的小尺寸和透明性使得能够在细胞水平对宿主和病原体的感染动态进行成像。具有荧光先天免疫细胞的转基因幼体可用于识别参与感染的特定细胞类型(22 - 24)。修饰的反义寡核苷酸(吗啉代)可用于敲低各种免疫成分,如吞噬细胞NADPH氧化酶,并研究对真菌感染的反应变化(5)。除了使用小型低等脊椎动物在伦理和实际操作上的优势外,斑马鱼幼体还提供了在活体和彩色条件下对病原体与宿主之间激烈战斗进行成像的独特可能性。斑马鱼已被用于多种人类病原菌感染的建模,并在我们对分枝杆菌感染的理解取得重大进展中发挥了重要作用(3, 25)。然而,直到最近才有较大的病原体(如真菌)被用于感染幼体(5, 23, 26),并且迄今为止尚未有对感染方法的详细直观描述。在这里,我们展示了对原代(25)斑马鱼后脑脑室进行显微注射的技术,包括我们对先前方案的改进。我们使用斑马鱼幼体模型进行真菌感染的研究结果与体外研究不同,并强调了在宿主复杂环境而非培养皿简化系统中研究宿主 - 病原体相互作用的必要性(5)。

相似文献

1
Non-invasive imaging of disseminated candidiasis in zebrafish larvae.
J Vis Exp. 2012 Jul 30(65):4051. doi: 10.3791/4051.
3
Live imaging of disseminated candidiasis in zebrafish reveals role of phagocyte oxidase in limiting filamentous growth.
Eukaryot Cell. 2011 Jul;10(7):932-44. doi: 10.1128/EC.05005-11. Epub 2011 May 6.
4
A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.
Dis Model Mech. 2015 Nov;8(11):1375-88. doi: 10.1242/dmm.019992. Epub 2015 Aug 20.
5
Emerging Fungal Pathogen Candida auris Evades Neutrophil Attack.
mBio. 2018 Aug 21;9(4):e01403-18. doi: 10.1128/mBio.01403-18.
6
Modeling mucosal candidiasis in larval zebrafish by swimbladder injection.
J Vis Exp. 2014 Nov 27(93):e52182. doi: 10.3791/52182.
7
Redundant Trojan horse and endothelial-circulatory mechanisms for host-mediated spread of Candida albicans yeast.
PLoS Pathog. 2020 Aug 10;16(8):e1008414. doi: 10.1371/journal.ppat.1008414. eCollection 2020 Aug.
8
Infection of zebrafish embryos with intracellular bacterial pathogens.
J Vis Exp. 2012 Mar 15(61):3781. doi: 10.3791/3781.
10
Innate immune cells and bacterial infection in zebrafish.
Methods Cell Biol. 2017;138:31-60. doi: 10.1016/bs.mcb.2016.08.002. Epub 2016 Oct 8.

引用本文的文献

1
Application of transgenic zebrafish for investigating inflammatory responses to nanomaterials: Recommendations for new users.
F1000Res. 2025 Jun 23;12:51. doi: 10.12688/f1000research.128851.2. eCollection 2023.
5
An arginase 2 promoter transgenic line illuminates immune cell polarisation in zebrafish.
Dis Model Mech. 2023 Jun 1;16(6). doi: 10.1242/dmm.049966. Epub 2023 May 3.
7
Blood Vessel Imaging at Pre-Larval Stages of Zebrafish Embryonic Development.
Diagnostics (Basel). 2020 Oct 30;10(11):886. doi: 10.3390/diagnostics10110886.
9
Animal Models to Study Mucormycosis.
J Fungi (Basel). 2019 Mar 27;5(2):27. doi: 10.3390/jof5020027.
10
The Zebrafish as a Model Host for Invasive Fungal Infections.
J Fungi (Basel). 2018 Dec 13;4(4):136. doi: 10.3390/jof4040136.

本文引用的文献

1
Zebrafish: a see-through host and a fluorescent toolbox to probe host-pathogen interaction.
PLoS Pathog. 2012 Jan;8(1):e1002349. doi: 10.1371/journal.ppat.1002349. Epub 2012 Jan 5.
2
Live imaging of disseminated candidiasis in zebrafish reveals role of phagocyte oxidase in limiting filamentous growth.
Eukaryot Cell. 2011 Jul;10(7):932-44. doi: 10.1128/EC.05005-11. Epub 2011 May 6.
3
mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish.
Blood. 2011 Jan 27;117(4):e49-56. doi: 10.1182/blood-2010-10-314120. Epub 2010 Nov 17.
7
Zebrafish as a model host for Candida albicans infection.
Infect Immun. 2010 Jun;78(6):2512-21. doi: 10.1128/IAI.01293-09. Epub 2010 Mar 22.
8
Host-microbe interactions in the developing zebrafish.
Curr Opin Immunol. 2010 Feb;22(1):10-9. doi: 10.1016/j.coi.2010.01.006. Epub 2010 Feb 12.
10
Real-time observation of listeria monocytogenes-phagocyte interactions in living zebrafish larvae.
Infect Immun. 2009 Sep;77(9):3651-60. doi: 10.1128/IAI.00408-09. Epub 2009 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验