Suppr超能文献

氧化还原调节钠钙处理。

Redox regulation of sodium and calcium handling.

机构信息

Abt. Kardiologie und Pneumologie/Herzzentrum, Deutsches Zentrum für Herzkreislaufforschung, Georg-August-Universität, Göttingen, Germany.

出版信息

Antioxid Redox Signal. 2013 Mar 20;18(9):1063-77. doi: 10.1089/ars.2012.4818. Epub 2012 Oct 3.

Abstract

SIGNIFICANCE

In heart failure (HF), contractile dysfunction and arrhythmias result from disturbed intracellular Ca handling. Activated stress kinases like cAMP-dependent protein kinase A (PKA), protein kinase C (PKC), and Ca/calmodulin-dependent protein kinase II (CaMKII), which are known to influence many Ca-regulatory proteins, are mechanistically involved.

RECENT ADVANCES

Beside classical activation pathways, it is becoming increasingly evident that reactive oxygen species (ROS) can directly oxidize these kinases, leading to alternative activation. Since HF is associated with increased ROS generation, ROS-activated serine/threonine kinases may play a crucial role in the disturbance of cellular Ca homeostasis. Many of the previously described ROS effects on ion channels and transporters are possibly mediated by these stress kinases. For instance, ROS have been shown to oxidize and activate CaMKII, thereby increasing Na influx through voltage-gated Na channels, which can lead to intracellular Na accumulation and action potential prolongation. Consequently, Ca entry via activated NCX is favored, which together with ROS-induced dysfunction of the sarcoplasmic reticulum can lead to dramatic intracellular Ca accumulation, diminished contractility, and arrhythmias.

CRITICAL ISSUES

While low amounts of ROS may regulate kinase activity, excessive uncontrolled ROS production may lead to direct redox modification of Ca handling proteins. Therefore, depending on the source and amount of ROS generated, ROS could have very different effects on Ca-handling proteins.

FUTURE DIRECTIONS

The discrimination between fine-tuned ROS signaling and unspecific ROS damage may be crucial for the understanding of heart failure development and important for the investigation of targeted treatment strategies.

摘要

意义

在心力衰竭(HF)中,收缩功能障碍和心律失常是由于细胞内 Ca 处理紊乱引起的。已知有许多 Ca 调节蛋白受 cAMP 依赖性蛋白激酶 A(PKA)、蛋白激酶 C(PKC)和 Ca/钙调蛋白依赖性蛋白激酶 II(CaMKII)等激活的应激激酶的影响,这些激酶在机制上参与其中。

最新进展

除了经典的激活途径外,越来越明显的是,活性氧(ROS)可以直接氧化这些激酶,导致替代激活。由于 HF 与 ROS 生成增加有关,ROS 激活的丝氨酸/苏氨酸激酶可能在细胞内 Ca 稳态的紊乱中发挥关键作用。以前描述的许多 ROS 对离子通道和转运体的影响可能是由这些应激激酶介导的。例如,ROS 已被证明可氧化和激活 CaMKII,从而通过电压门控 Na 通道增加 Na 内流,这可导致细胞内 Na 积累和动作电位延长。因此,通过激活的 NCX 有利于 Ca 进入,这与 ROS 诱导的肌浆网功能障碍一起可导致细胞内 Ca 积累急剧增加、收缩力减弱和心律失常。

关键问题

虽然少量的 ROS 可能调节激酶活性,但过量的不受控制的 ROS 产生可能导致 Ca 处理蛋白的直接氧化还原修饰。因此,根据产生的 ROS 的来源和数量,ROS 对 Ca 处理蛋白可能有非常不同的影响。

未来方向

区分精细调节的 ROS 信号和非特异性 ROS 损伤对于理解心力衰竭的发展可能至关重要,并且对于研究靶向治疗策略也很重要。

相似文献

1
Redox regulation of sodium and calcium handling.
Antioxid Redox Signal. 2013 Mar 20;18(9):1063-77. doi: 10.1089/ars.2012.4818. Epub 2012 Oct 3.
2
NADPH oxidase 2 mediates angiotensin II-dependent cellular arrhythmias via PKA and CaMKII.
J Mol Cell Cardiol. 2014 Oct;75:206-15. doi: 10.1016/j.yjmcc.2014.07.011. Epub 2014 Jul 27.
3
Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes.
Free Radic Biol Med. 2013 Oct;63:338-49. doi: 10.1016/j.freeradbiomed.2013.05.035. Epub 2013 Jun 1.
4
Mechanistic Investigation of the Arrhythmogenic Role of Oxidized CaMKII in the Heart.
Biophys J. 2015 Aug 18;109(4):838-49. doi: 10.1016/j.bpj.2015.06.064.
7
Calcium Signaling and Reactive Oxygen Species in Mitochondria.
Circ Res. 2018 May 11;122(10):1460-1478. doi: 10.1161/CIRCRESAHA.118.310082.
8
Redox regulation of cardiac calcium channels and transporters.
Cardiovasc Res. 2006 Jul 15;71(2):310-21. doi: 10.1016/j.cardiores.2006.02.019. Epub 2006 Mar 6.
10
Activation of CaMKII as a key regulator of reactive oxygen species production in diabetic rat heart.
J Mol Cell Cardiol. 2012 May;52(5):1103-11. doi: 10.1016/j.yjmcc.2012.02.006. Epub 2012 Feb 25.

引用本文的文献

1
Exercise Empowerment: A Multifaceted Anatomy in Managing Diabetic Myocardial Disorder.
J Cardiovasc Transl Res. 2025 Jun 4. doi: 10.1007/s12265-025-10630-1.
2
Mechano-energetic uncoupling in hypertrophic cardiomyopathy: Pathophysiological mechanisms and therapeutic opportunities.
J Mol Cell Cardiol Plus. 2023 May 6;4:100036. doi: 10.1016/j.jmccpl.2023.100036. eCollection 2023 Jun.
3
The inotropic and arrhythmogenic effects of acutely increased late I are associated with elevated ROS but not oxidation of PKARIα.
Front Cardiovasc Med. 2024 Jul 15;11:1379930. doi: 10.3389/fcvm.2024.1379930. eCollection 2024.
4
The Association Between Oxidative Stress and the Progression of Heart Failure: A Systematic Review.
Cureus. 2024 Mar 1;16(3):e55313. doi: 10.7759/cureus.55313. eCollection 2024 Mar.
5
Nongenetic Optical Modulation of Pluripotent Stem Cells Derived Cardiomyocytes Function in the Red Spectral Range.
Adv Sci (Weinh). 2024 Jan;11(3):e2304303. doi: 10.1002/advs.202304303. Epub 2023 Nov 10.
6
Mitochondrial Calcium Overload Plays a Causal Role in Oxidative Stress in the Failing Heart.
Biomolecules. 2023 Sep 19;13(9):1409. doi: 10.3390/biom13091409.
7
Flipping Off and On the Redox Switch in the Microcirculation.
Annu Rev Physiol. 2023 Feb 10;85:165-189. doi: 10.1146/annurev-physiol-031522-021457.
8
Glymphatic Dysfunction Induced Oxidative Stress and Neuro-Inflammation in Major Depression Disorders.
Antioxidants (Basel). 2022 Nov 20;11(11):2296. doi: 10.3390/antiox11112296.
9
Benefits of SGLT2 inhibitors in arrhythmias.
Front Cardiovasc Med. 2022 Oct 20;9:1011429. doi: 10.3389/fcvm.2022.1011429. eCollection 2022.
10
Citrullination is linked to reduced Ca sensitivity in hearts of a murine model of rheumatoid arthritis.
Acta Physiol (Oxf). 2022 Nov;236(3):e13869. doi: 10.1111/apha.13869. Epub 2022 Sep 2.

本文引用的文献

1
2
Oxidation of CaMKII determines the cardiotoxic effects of aldosterone.
Nat Med. 2011 Nov 13;17(12):1610-8. doi: 10.1038/nm.2506.
3
Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress.
Cardiovasc Res. 2012 Jan 1;93(1):79-88. doi: 10.1093/cvr/cvr274. Epub 2011 Oct 19.
4
Oxidative stress and heart failure.
Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2181-90. doi: 10.1152/ajpheart.00554.2011. Epub 2011 Sep 23.
5
CaMKII-dependent SR Ca leak contributes to doxorubicin-induced impaired Ca handling in isolated cardiac myocytes.
J Mol Cell Cardiol. 2011 Nov;51(5):749-59. doi: 10.1016/j.yjmcc.2011.07.016. Epub 2011 Jul 26.
6
PKC-delta and PKC-epsilon: foes of the same family or strangers?
J Mol Cell Cardiol. 2011 Nov;51(5):665-73. doi: 10.1016/j.yjmcc.2011.07.013. Epub 2011 Jul 23.
7
Oxidized CaMKII causes cardiac sinus node dysfunction in mice.
J Clin Invest. 2011 Aug;121(8):3277-88. doi: 10.1172/JCI57833. Epub 2011 Jul 25.
9
CaMKII in the cardiovascular system: sensing redox states.
Physiol Rev. 2011 Jul;91(3):889-915. doi: 10.1152/physrev.00018.2010.
10
Mitochondrial targeted antioxidant Peptide ameliorates hypertensive cardiomyopathy.
J Am Coll Cardiol. 2011 Jun 28;58(1):73-82. doi: 10.1016/j.jacc.2010.12.044. Epub 2011 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验