Suppr超能文献

毕赤酵母水通道蛋白 Aqy1 的分子动力学模拟和生物信息学研究。

Molecular dynamics simulation and bioinformatics study on yeast aquaporin Aqy1 from Pichia pastoris.

机构信息

Department of Laboratory Medicine, Yancheng Health Vocational & Technical College, Jiangsu Yancheng 224006, PR China.

出版信息

Int J Biol Sci. 2012;8(7):1026-35. doi: 10.7150/ijbs.4703. Epub 2012 Aug 9.

Abstract

In the present study, an equilibrated system for the Aqy1 tetramer was developed, and molecular biophysics modeling showed that the Aqy1 channel was blocked by Tyr-31 in the N-terminus, which was also supported by the free energy profiles. However, bioinformatics analysis of the amino acid sequence of Aqy1 indicated this Tyr-31 is not conserved across all fungi. Analysis of the equilibrated structure showed that the central pore along the four-fold axis of the tetramers is formed with hydrophobic amino acid residues. In particular, Phe-90, Trp-198, and Phe-202 form the narrowest part of the pore. Therefore, water molecules are not expected to translocate through the central pore, a hypothesis that we confirmed by molecular dynamics simulations. Each monomer of the Aqy1 tetramers forms a channel whose walls consist mostly of hydrophilic residues, transporting through the selectivity filter containing Arg-227, His-212, Phe-92, and Ala-221, and the two conserved Asn-Pro-Ala (NPA) motifs containing asparagines 224 and 112. In summary, not all fungal aquaporins share the same gating mechanism by a tyrosine residue in the N-terminus, and the structural analysis in the present study should aid our understanding of aquaporin structure and its functional implications.

摘要

在本研究中,开发了一个 Aqy1 四聚体的平衡系统,分子生物物理建模表明,Aqy1 通道被 N 端的 Tyr-31 阻断,这也得到了自由能图谱的支持。然而,对 Aqy1 氨基酸序列的生物信息学分析表明,这种 Tyr-31 在所有真菌中并不保守。平衡结构的分析表明,沿着四聚体的四元轴的中央孔由疏水性氨基酸残基形成。特别是,Phe-90、Trp-198 和 Phe-202 形成了孔最窄的部分。因此,预计水分子不会通过中央孔迁移,这一假设我们通过分子动力学模拟得到了证实。Aqy1 四聚体的每个单体形成一个通道,其壁主要由亲水性残基组成,通过包含 Arg-227、His-212、Phe-92 和 Ala-221 的选择性过滤器运输,以及包含天冬酰胺 224 和 112 的两个保守的 Asn-Pro-Ala (NPA) 基序。总之,并非所有真菌水通道蛋白都通过 N 端的酪氨酸残基具有相同的门控机制,本研究中的结构分析应有助于我们理解水通道蛋白的结构及其功能意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b81/3421234/65da4cdc8282/ijbsv08p1026g01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验