Suppr超能文献

低血糖和高血糖与血糖分布的均值、标准差、变异系数和性质有关。

Hypo- and hyperglycemia in relation to the mean, standard deviation, coefficient of variation, and nature of the glucose distribution.

机构信息

Biomedical Informatics Consultants LLC , Potomac, Maryland 20854, USA.

出版信息

Diabetes Technol Ther. 2012 Oct;14(10):868-76. doi: 10.1089/dia.2012.0062. Epub 2012 Sep 6.

Abstract

AIMS

We describe a new approach to estimate the risks of hypo- and hyperglycemia based on the mean and SD of the glucose distribution using optional transformations of the glucose scale to achieve a more nearly symmetrical and Gaussian distribution, if necessary. We examine the correlation of risks of hypo- and hyperglycemia calculated using different glucose thresholds and the relationships of these risks to the mean glucose, SD, and percentage coefficient of variation (%CV).

MATERIALS AND METHODS

Using representative continuous glucose monitoring datasets, one can predict the risk of glucose values above or below any arbitrary threshold if the glucose distribution is Gaussian or can be transformed to be Gaussian. Symmetry and gaussianness can be tested objectively and used to optimize the transformation.

RESULTS

The method performs well with excellent correlation of predicted and observed risks of hypo- or hyperglycemia for individual subjects by time of day or for a specified range of dates. One can compare observed and calculated risks of hypo- and hyperglycemia for a series of thresholds considering their uncertainties. Thresholds such as 80 mg/dL can be used as surrogates for thresholds such as 50 mg/dL. We observe a high correlation of risk of hypoglycemia with %CV and illustrate the theoretical basis for that relationship.

CONCLUSIONS

One can estimate the historical risks of hypo- and hyperglycemia by time of day, date, day of the week, or range of dates, using any specified thresholds. Risks of hypoglycemia with one threshold (e.g., 80 mg/dL) can be used as an effective surrogate marker for hypoglycemia at other thresholds (e.g., 50 mg/dL). These estimates of risk can be useful in research studies and in the clinical care of patients with diabetes.

摘要

目的

我们描述了一种新方法,通过对血糖分布的均值和标准差进行可选变换,来估计低血糖和高血糖的风险,以实现更接近对称和高斯分布,如果需要的话。我们检查了使用不同血糖阈值计算的低血糖和高血糖风险的相关性,以及这些风险与平均血糖、标准差和变异系数(%CV)的关系。

材料和方法

使用代表性的连续血糖监测数据集,如果血糖分布是高斯分布或可以变换为高斯分布,则可以预测任何任意阈值以上或以下的血糖值的风险。可以客观地测试对称性和高斯性,并用于优化变换。

结果

该方法在个体受试者的日间或特定日期范围内表现良好,具有良好的预测和观察到的低血糖或高血糖风险的相关性。可以比较一系列考虑其不确定性的阈值的观察到和计算的低血糖和高血糖风险。可以将 80mg/dL 等阈值用作 50mg/dL 等阈值的替代物。我们观察到低血糖风险与%CV 高度相关,并说明了这种关系的理论基础。

结论

可以根据时间、日期、星期几或日期范围,使用任何指定的阈值,估计低血糖和高血糖的历史风险。一个阈值(例如 80mg/dL)的低血糖风险可以用作其他阈值(例如 50mg/dL)的有效替代标志物。这些风险估计在研究和糖尿病患者的临床护理中可能有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验