Suppr超能文献

在 Geobacter sulfurreducens 生物膜中,长程电子传递是由氧化还原梯度驱动的。

Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven.

机构信息

National Research Council, Washington, DC 20001, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15467-72. doi: 10.1073/pnas.1209829109. Epub 2012 Sep 5.

Abstract

Geobacter spp. can acquire energy by coupling intracellular oxidation of organic matter with extracellular electron transfer to an anode (an electrode poised at a metabolically oxidizing potential), forming a biofilm extending many cell lengths away from the anode surface. It has been proposed that long-range electron transport in such biofilms occurs through a network of bound redox cofactors, thought to involve extracellular matrix c-type cytochromes, as occurs for polymers containing discrete redox moieties. Here, we report measurements of electron transport in actively respiring Geobacter sulfurreducens wild type biofilms using interdigitated microelectrode arrays. Measurements when one electrode is used as an anode and the other electrode is used to monitor redox status of the biofilm 15 μm away indicate the presence of an intrabiofilm redox gradient, in which the concentration of electrons residing within the proposed redox cofactor network is higher farther from the anode surface. The magnitude of the redox gradient seems to correlate with current, which is consistent with electron transport from cells in the biofilm to the anode, where electrons effectively diffuse from areas of high to low concentration, hopping between redox cofactors. Comparison with gate measurements, when one electrode is used as an electron source and the other electrode is used as an electron drain, suggests that there are multiple types of redox cofactors in Geobacter biofilms spanning a range in oxidation potential that can engage in electron transport. The majority of these redox cofactors, however, seem to have oxidation potentials too negative to be involved in electron transport when acetate is the electron source.

摘要

硫还原地杆菌属(Geobacter spp.)可以通过将细胞内有机物氧化与细胞外电子传递到阳极(置于代谢氧化电势的电极)相偶联来获取能量,从而形成一个从阳极表面延伸出多个细胞长度的生物膜。据推测,这种生物膜中的长程电子传递是通过结合的氧化还原辅因子网络进行的,这些辅因子被认为涉及细胞外基质 c 型细胞色素,就像含有离散氧化还原部分的聚合物一样。在这里,我们使用交错微电极阵列报告了活性呼吸的硫还原地杆菌野生型生物膜中电子传递的测量结果。当一个电极用作阳极,另一个电极用于监测 15 μm 外生物膜的氧化还原状态时的测量结果表明存在一个生物膜内氧化还原梯度,其中存在于所提出的氧化还原辅因子网络中的电子浓度在更远离阳极表面的地方更高。氧化还原梯度的大小似乎与电流相关,这与电子从生物膜中的细胞传输到阳极是一致的,在阳极中,电子有效地从高浓度区域扩散到低浓度区域,在氧化还原辅因子之间跳跃。与门测量的比较表明,当一个电极用作电子源,另一个电极用作电子漏极时,在硫还原地杆菌生物膜中有多种氧化还原辅因子,它们跨越一个氧化还原电势范围,可以参与电子传输。然而,当乙酸盐是电子源时,这些氧化还原辅因子中的大多数似乎具有太负的氧化还原电势而不能参与电子传输。

相似文献

1
Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15467-72. doi: 10.1073/pnas.1209829109. Epub 2012 Sep 5.
2
Spatially resolved confocal resonant Raman microscopic analysis of anode-grown Geobacter sulfurreducens biofilms.
Chemphyschem. 2014 Feb 3;15(2):320-7. doi: 10.1002/cphc.201300984. Epub 2014 Jan 8.
3
Redox-gradient driven electron transport in a mixed community anodic biofilm.
FEMS Microbiol Ecol. 2018 Jun 1;94(6). doi: 10.1093/femsec/fiy081.
4
On electron transport through Geobacter biofilms.
ChemSusChem. 2012 Jun;5(6):1099-105. doi: 10.1002/cssc.201100748. Epub 2012 May 21.
5
7
Study of the mechanism of catalytic activity of G. sulfurreducens biofilm anodes during biofilm growth.
ChemSusChem. 2012 Jun;5(6):1106-18. doi: 10.1002/cssc.201100737. Epub 2012 May 13.
9
NanoSIMS imaging reveals metabolic stratification within current-producing biofilms.
Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20716-20724. doi: 10.1073/pnas.1912498116. Epub 2019 Sep 23.
10
Limitations for current production in Geobacter sulfurreducens biofilms.
ChemSusChem. 2013 Apr;6(4):711-20. doi: 10.1002/cssc.201200671. Epub 2013 Feb 18.

引用本文的文献

2
Electron transport across the cell envelope via multiheme -type cytochromes in .
Front Chem. 2025 Jul 16;13:1621274. doi: 10.3389/fchem.2025.1621274. eCollection 2025.
3
Single-cell phenotyping of extracellular electron transfer via microdroplet encapsulation.
Appl Environ Microbiol. 2025 Jan 31;91(1):e0246524. doi: 10.1128/aem.02465-24. Epub 2025 Jan 14.
4
Synthesis of Palladium Nanoparticles by Electrode-Respiring Biofilms.
ACS Biomater Sci Eng. 2025 Jan 13;11(1):298-307. doi: 10.1021/acsbiomaterials.4c01183. Epub 2024 Dec 11.
5
Thermodynamic constraints on the window of opportunity for direct interspecies electron transfer (DIET).
Microb Biotechnol. 2024 Nov;17(11):e70019. doi: 10.1111/1751-7915.70019.
6
Interaction of living cable bacteria with carbon electrodes in bioelectrochemical systems.
Appl Environ Microbiol. 2024 Aug 21;90(8):e0079524. doi: 10.1128/aem.00795-24. Epub 2024 Jul 31.
7
Single-Cell Phenotyping of Extracellular Electron Transfer via Microdroplet Encapsulation.
bioRxiv. 2024 Jun 13:2024.06.13.598847. doi: 10.1101/2024.06.13.598847.
8
Microbially Influenced Corrosion of Steel in Marine Environments: A Review from Mechanisms to Prevention.
Microorganisms. 2023 Sep 12;11(9):2299. doi: 10.3390/microorganisms11092299.
9
In Vivo Voltammetric Imaging of Metal Nanoparticle-Catalyzed Single-Cell Electron Transfer by Fermi Level-Responsive Graphene.
Research (Wash D C). 2023 May 22;6:0145. doi: 10.34133/research.0145. eCollection 2023.

本文引用的文献

1
Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens.
Environ Microbiol Rep. 2011 Apr;3(2):211-7. doi: 10.1111/j.1758-2229.2010.00210.x. Epub 2010 Aug 26.
2
Multistep hopping and extracellular charge transfer in microbial redox chains.
Phys Chem Chem Phys. 2012 Oct 28;14(40):13802-8. doi: 10.1039/c2cp41185g. Epub 2012 Jul 13.
3
The 'porin-cytochrome' model for microbe-to-mineral electron transfer.
Mol Microbiol. 2012 Jul;85(2):201-12. doi: 10.1111/j.1365-2958.2012.08088.x. Epub 2012 May 30.
4
On electron transport through Geobacter biofilms.
ChemSusChem. 2012 Jun;5(6):1099-105. doi: 10.1002/cssc.201100748. Epub 2012 May 21.
5
Study of the mechanism of catalytic activity of G. sulfurreducens biofilm anodes during biofilm growth.
ChemSusChem. 2012 Jun;5(6):1106-18. doi: 10.1002/cssc.201100737. Epub 2012 May 13.
6
Long-distance electron transfer by G. sulfurreducens biofilms results in accumulation of reduced c-type cytochromes.
ChemSusChem. 2012 Jun;5(6):1047-53. doi: 10.1002/cssc.201100734. Epub 2012 May 10.
7
Physical constraints on charge transport through bacterial nanowires.
Faraday Discuss. 2012;155:43-62; discussion 103-14. doi: 10.1039/c1fd00098e.
9
Geobacter: the microbe electric's physiology, ecology, and practical applications.
Adv Microb Physiol. 2011;59:1-100. doi: 10.1016/B978-0-12-387661-4.00004-5.
10
Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism.
Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15248-52. doi: 10.1073/pnas.1108616108. Epub 2011 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验