Suppr超能文献

基于字典学习的分组稀疏表示在医学图像去噪与融合中的应用

Group-sparse representation with dictionary learning for medical image denoising and fusion.

机构信息

College of Electrical and Information Engineering, Hunan University, Changsha 410082, China.

出版信息

IEEE Trans Biomed Eng. 2012 Dec;59(12):3450-9. doi: 10.1109/TBME.2012.2217493. Epub 2012 Sep 6.

Abstract

Recently, sparse representation has attracted a lot of interest in various areas. However, the standard sparse representation does not consider the intrinsic structure, i.e., the nonzero elements occur in clusters, called group sparsity. Furthermore, there is no dictionary learning method for group sparse representation considering the geometrical structure of space spanned by atoms. In this paper, we propose a novel dictionary learning method, called Dictionary Learning with Group Sparsity and Graph Regularization (DL-GSGR). First, the geometrical structure of atoms is modeled as the graph regularization. Then, combining group sparsity and graph regularization, the DL-GSGR is presented, which is solved by alternating the group sparse coding and dictionary updating. In this way, the group coherence of learned dictionary can be enforced small enough such that any signal can be group sparse coded effectively. Finally, group sparse representation with DL-GSGR is applied to 3-D medical image denoising and image fusion. Specifically, in 3-D medical image denoising, a 3-D processing mechanism (using the similarity among nearby slices) and temporal regularization (to perverse the correlations across nearby slices) are exploited. The experimental results on 3-D image denoising and image fusion demonstrate the superiority of our proposed denoising and fusion approaches.

摘要

最近,稀疏表示在各个领域引起了广泛关注。然而,标准的稀疏表示并没有考虑到内在结构,即非零元素聚集在一起,称为组稀疏。此外,还没有考虑原子所张成的空间的几何结构的组稀疏表示字典学习方法。在本文中,我们提出了一种新的字典学习方法,称为具有组稀疏和图正则化的字典学习(DL-GSGR)。首先,将原子的几何结构建模为图正则化。然后,通过交替进行组稀疏编码和字典更新,提出了结合组稀疏和图正则化的 DL-GSGR。通过这种方式,可以强制学习字典的组一致性足够小,从而可以有效地对任何信号进行组稀疏编码。最后,将具有 DL-GSGR 的组稀疏表示应用于 3D 医学图像去噪和图像融合。具体来说,在 3D 医学图像去噪中,利用了 3D 处理机制(利用相邻切片之间的相似性)和时间正则化(用于纠正相邻切片之间的相关性)。在 3D 图像去噪和图像融合的实验结果表明了我们提出的去噪和融合方法的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验