Suppr超能文献

利用甲基 NMR 光谱研究全长 p53 和特定 DNA 复合物中的结构域-结构域相互作用。

Domain-domain interactions in full-length p53 and a specific DNA complex probed by methyl NMR spectroscopy.

机构信息

Medical Research Council Laboratory of Molecular Biology, Cambridge, England.

出版信息

Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15752-6. doi: 10.1073/pnas.1214176109. Epub 2012 Sep 12.

Abstract

The tumor suppressor p53 is a homotetramer of 4 × 393 residues. Its core domain and tetramerization domain are linked and flanked by intrinsically disordered sequences, which hinder its full structural characterization. There is an outstanding problem of the state of the tetramerization domain. Structural studies on the isolated tetramerization domain show it is in a folded tetrameric conformation, but there are conflicting models from electron microscopy of the full-length protein, one of which proposes that the domain is not tetramerically folded and the tetrameric protein is stabilized by interactions between the N and C termini. Here, we present methyl-transverse relaxation optimized NMR spectroscopy (methyl-TROSY) investigations on the full-length and separate domains of the protein with its methionine residues enriched with (13)C to probe its quaternary structure. We obtained high-quality spectra of both the full-length tetrameric p53 and its DNA complex, observing the environment at 11 specific methyl sites. The tetramerization domain was as tetramerically folded in the full-length constructs as in the isolated domain. The N and C termini were intrinsically disordered in both the full-length protein and its complex with a 20-residue specific DNA sequence. Additionally, we detected in the interface of the core (DNA-binding) and N-terminal parts of the protein a slow conformational exchange process that was modulated by specific recognition of DNA, indicating allosteric processes.

摘要

肿瘤抑制因子 p53 是由 4 个 393 个残基组成的四聚体。其核心结构域和四聚化结构域相连,并被固有无序序列所包围,这阻碍了其充分的结构特征描述。其中存在一个关于四聚化结构域状态的突出问题。对分离的四聚化结构域的结构研究表明,它处于折叠的四聚体构象,但电子显微镜的全长蛋白质模型存在冲突,其中一个模型提出该结构域没有四聚折叠,四聚体蛋白质通过 N 端和 C 端之间的相互作用稳定。在这里,我们通过甲基横向弛豫优化的 NMR 光谱学(methyl-TROSY)对该全长和分离结构域进行了研究,其中蛋白的甲硫氨酸残基用 (13)C 标记以探测其四级结构。我们获得了全长四聚体 p53 及其 DNA 复合物的高质量光谱,观察了 11 个特定甲基位点的环境。四聚化结构域在全长构建体中与在分离的结构域中一样是四聚折叠的。全长蛋白质及其与 20 个残基特定 DNA 序列的复合物中,N 端和 C 端都是固有无序的。此外,我们在蛋白质的核心(DNA 结合)和 N 端部分的界面检测到一个缓慢的构象交换过程,该过程受到 DNA 的特异性识别的调节,表明存在变构过程。

相似文献

1
Domain-domain interactions in full-length p53 and a specific DNA complex probed by methyl NMR spectroscopy.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15752-6. doi: 10.1073/pnas.1214176109. Epub 2012 Sep 12.
2
Multiple conformations of full-length p53 detected with single-molecule fluorescence resonance energy transfer.
Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20758-63. doi: 10.1073/pnas.0909644106. Epub 2009 Nov 20.
3
Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex.
Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12324-9. doi: 10.1073/pnas.0705069104. Epub 2007 Jul 9.
4
Core domain interactions in full-length p53 in solution.
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2115-9. doi: 10.1073/pnas.0511130103. Epub 2006 Feb 6.
5
Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain.
Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5762-7. doi: 10.1073/pnas.0801353105. Epub 2008 Apr 7.
6
Latent and active p53 are identical in conformation.
Nat Struct Biol. 2001 Sep;8(9):756-60. doi: 10.1038/nsb0901-756.
7
Mapping Interactions of the Intrinsically Disordered C-Terminal Regions of Tetrameric p53 by Segmental Isotope Labeling and NMR.
Biochemistry. 2022 Dec 6;61(23):2709-2719. doi: 10.1021/acs.biochem.2c00528. Epub 2022 Nov 15.
8
NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA.
J Biol Chem. 2001 Dec 28;276(52):49020-7. doi: 10.1074/jbc.M107516200. Epub 2001 Oct 17.
9
Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain.
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11302-E11310. doi: 10.1073/pnas.1814051115. Epub 2018 Nov 12.
10
Phosphorylation Regulates the Bound Structure of an Intrinsically Disordered Protein: The p53-TAZ2 Case.
PLoS One. 2016 Jan 7;11(1):e0144284. doi: 10.1371/journal.pone.0144284. eCollection 2016.

引用本文的文献

1
How Do Cancer-Related Mutations Affect the Oligomerisation State of the p53 Tetramerisation Domain?
Curr Issues Mol Biol. 2023 Jun 7;45(6):4985-5004. doi: 10.3390/cimb45060317.
2
Mapping Interactions of the Intrinsically Disordered C-Terminal Regions of Tetrameric p53 by Segmental Isotope Labeling and NMR.
Biochemistry. 2022 Dec 6;61(23):2709-2719. doi: 10.1021/acs.biochem.2c00528. Epub 2022 Nov 15.
3
Structural Basis of Mutation-Dependent p53 Tetramerization Deficiency.
Int J Mol Sci. 2022 Jul 19;23(14):7960. doi: 10.3390/ijms23147960.
4
A phosphorylation-dependent switch in the disordered p53 transactivation domain regulates DNA binding.
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2021456118. Epub 2020 Dec 21.
6
Interaction between p53 N terminus and core domain regulates specific and nonspecific DNA binding.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8859-8868. doi: 10.1073/pnas.1903077116. Epub 2019 Apr 15.
7
Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain.
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11302-E11310. doi: 10.1073/pnas.1814051115. Epub 2018 Nov 12.
8
Characterization of an Hsp90-Independent Interaction between Co-Chaperone p23 and Transcription Factor p53.
Biochemistry. 2018 Feb 13;57(6):935-944. doi: 10.1021/acs.biochem.7b01076. Epub 2018 Jan 24.
9
Structures of closed and open conformations of dimeric human ATM.
Sci Adv. 2017 May 10;3(5):e1700933. doi: 10.1126/sciadv.1700933. eCollection 2017 May.
10
DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions.
Nucleic Acids Res. 2016 Nov 2;44(19):9096-9109. doi: 10.1093/nar/gkw770. Epub 2016 Sep 6.

本文引用的文献

1
Quaternary structure of the specific p53-DNA complex reveals the mechanism of p53 mutant dominance.
Nucleic Acids Res. 2011 Nov 1;39(20):8960-71. doi: 10.1093/nar/gkr386. Epub 2011 Jul 14.
2
Interaction of the p53 DNA-binding domain with its n-terminal extension modulates the stability of the p53 tetramer.
J Mol Biol. 2011 Jun 10;409(3):358-68. doi: 10.1016/j.jmb.2011.03.047. Epub 2011 Mar 30.
3
Electron microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):557-62. doi: 10.1073/pnas.1015520107. Epub 2010 Dec 22.
4
Single-Molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53.
Nucleic Acids Res. 2011 Mar;39(6):2294-303. doi: 10.1093/nar/gkq800. Epub 2010 Nov 18.
5
Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs.
Nat Struct Mol Biol. 2010 Apr;17(4):423-9. doi: 10.1038/nsmb.1800. Epub 2010 Apr 4.
6
Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR.
Science. 2010 Apr 2;328(5974):98-102. doi: 10.1126/science.1184991.
7
Crystal structure of the p53 core domain bound to a full consensus site as a self-assembled tetramer.
Structure. 2010 Feb 10;18(2):246-56. doi: 10.1016/j.str.2009.11.011.
8
Conservation of DNA-binding specificity and oligomerisation properties within the p53 family.
BMC Genomics. 2009 Dec 23;10:628. doi: 10.1186/1471-2164-10-628.
9
Multiple conformations of full-length p53 detected with single-molecule fluorescence resonance energy transfer.
Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20758-63. doi: 10.1073/pnas.0909644106. Epub 2009 Nov 20.
10
Methyl groups as probes of supra-molecular structure, dynamics and function.
J Biomol NMR. 2010 Jan;46(1):75-87. doi: 10.1007/s10858-009-9376-1. Epub 2009 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验