Department of Biotechnology and Food Engineering Technion, Technion-Israel Institute of Technology, Haifa 32000, Israel.
J Biol Chem. 2012 Oct 26;287(44):36634-8. doi: 10.1074/jbc.C112.406769. Epub 2012 Sep 12.
Cellular membrane remodeling events such as mitochondrial dynamics, vesicle budding, and cell division rely on the large GTPases of the dynamin superfamily. Dynamins have long been characterized as fission molecules; however, how they mediate membrane fusion is largely unknown. Here we have characterized by cryo-electron microscopy and in vitro liposome fusion assays how the mitochondrial dynamin Mgm1 may mediate membrane fusion. Using cryo-EM, we first demonstrate that the Mgm1 complex is able to tether opposing membranes to a gap of ∼15 nm, the size of mitochondrial cristae folds. We further show that the Mgm1 oligomer undergoes a dramatic GTP-dependent conformational change suggesting that s-Mgm1 interactions could overcome repelling forces at fusion sites and that ultrastructural changes could promote the fusion of opposing membranes. Together our findings provide mechanistic details of the two known in vivo functions of Mgm1, membrane fusion and cristae maintenance, and more generally shed light onto how dynamins may function as fusion proteins.
细胞的膜重塑事件,如线粒体动力学、小泡出芽和细胞分裂,都依赖于动力蛋白超家族的大型 GTP 酶。动力蛋白长期以来一直被认为是分裂分子;然而,它们如何介导膜融合在很大程度上是未知的。在这里,我们通过冷冻电子显微镜和体外脂质体融合实验来描述线粒体动力蛋白 Mgm1 如何介导膜融合。通过冷冻电镜,我们首先证明 Mgm1 复合物能够将相对的膜系到一个约 15nm 的间隙上,这个大小与线粒体嵴折叠的大小一致。我们进一步表明,Mgm1 寡聚体发生了剧烈的 GTP 依赖性构象变化,这表明 s-Mgm1 相互作用可以克服融合部位的排斥力,超微结构的变化可以促进相对膜的融合。总的来说,我们的发现提供了 Mgm1 的两种已知的体内功能(膜融合和嵴维持)的机制细节,更普遍地揭示了动力蛋白如何作为融合蛋白发挥作用。