Suppr超能文献

基于主成分分析对医学多元化真实队列进行代谢综合征验证。

Validating metabolic syndrome through principal component analysis in a medically diverse, realistic cohort.

机构信息

Département de Mathématiques, Université de Sherbrooke, Sherbrooke, Québec, Canada.

出版信息

Metab Syndr Relat Disord. 2013 Feb;11(1):21-8. doi: 10.1089/met.2012.0094. Epub 2012 Sep 14.

Abstract

BACKGROUND

The concept of metabolic syndrome has been subject to etiological and clinical controversies in recent years. Associations among the five risk factors (obesity, hypertension, hyperglycemia, high triglyceride levels, and low high-density lipoprotein cholesterol) may help establish the validity of the concept, especially in a cohort representative of an actual population.

METHODS

We used principal component analysis (PCA) to analyze the structure of the physiological components of metabolic syndrome in 7213 patients contained in an administrative database for the Centre Hospitalier Universitaire de Sherbrooke in Sherbrooke, Quebec, a realistic cohort with diverse medical histories. We validated the results by repeating the analysis on stratified and random subgroups of patients, and on different combinations of risk factors. The first axis of the PCA was used to predict coronary heart disease (CHD) and diabetes.

RESULTS

The two first axes explained 53% of the variance. The first axis (33%) was associated in the expected direction with all five predictor variables, consistent with its interpretation as metabolic syndrome. The first axis was more predictive of subsequent CHD and diabetes than the formal definition of metabolic syndrome.

CONCLUSIONS

These results suggest that the concept of metabolic syndrome accurately captures an existing underlying physiological process. A continuous indicator could be constructed to identify metabolic syndrome more accurately, thus improving risk assessment for CHD and diabetes mellitus. Metabolic syndrome can be measured well even without all five predictors. However, discrepancies with other studies suggest that our results may not be generalizable, perhaps because our cohort tends to be sicker.

摘要

背景

近年来,代谢综合征的概念在病因学和临床方面存在争议。五种危险因素(肥胖、高血压、高血糖、高甘油三酯水平和低高密度脂蛋白胆固醇)之间的关联有助于确定该概念的有效性,尤其是在代表实际人群的队列中。

方法

我们使用主成分分析(PCA)对魁北克省舍布鲁克舍布鲁克大学中心医院行政数据库中包含的 7213 名患者的代谢综合征生理成分结构进行分析,这是一个具有多种病史的现实队列。我们通过在患者的分层和随机亚组以及不同的危险因素组合上重复分析来验证结果。使用 PCA 的第一轴来预测冠心病(CHD)和糖尿病。

结果

前两个轴解释了 53%的方差。第一轴(33%)与所有五个预测变量呈预期方向相关,与其作为代谢综合征的解释一致。第一轴比代谢综合征的正式定义更能预测随后的 CHD 和糖尿病。

结论

这些结果表明,代谢综合征的概念准确地捕捉到了一个现有的潜在生理过程。可以构建一个连续指标来更准确地识别代谢综合征,从而改善对 CHD 和糖尿病的风险评估。即使没有所有五个预测因素,也可以很好地测量代谢综合征。然而,与其他研究的差异表明,我们的结果可能不具有普遍性,也许是因为我们的队列倾向于更严重。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验