Suppr超能文献

治疗性疫苗:终极个性化治疗?

Therapeutic vaccines: the ultimate personalized therapy?

机构信息

Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA.

出版信息

Hum Vaccin Immunother. 2013 Jan;9(1):219-21. doi: 10.4161/hv.22106. Epub 2012 Sep 20.

Abstract

Personalized therapy is directed at obtaining maximal therapeutic effect on diseased tissue with minimal off-target side effects. Many classes of therapeutics have attempted to reach this ideal, only to fall well short. Therapeutic vaccines represent a novel class of therapies that can induce a dynamic immune response that, in theory, can continue to adapt and expand following initiation of vaccination. This adaptability, through epitope spreading or antigen cascade, can continuously refine a therapeutic immune response, making it more relevant to the patient's tumor. This active, dynamic, iterative process can continue long after the vaccine course has been completed. Recent clinical trials have provided further insight into the clinical activity of therapeutic vaccines, and offer guidance on clinical expectations following vaccine. The ongoing active sculpting of the immune response, along with the lack of significant side effects, uniquely positions therapeutic vaccines as perhaps the ultimate in personalized therapy.

摘要

个体化治疗旨在对病变组织产生最大的治疗效果,同时将非靶向副作用降至最低。许多治疗药物类别都试图达到这一理想状态,但都未能如愿。治疗性疫苗代表了一类新的治疗方法,它可以诱导一种动态的免疫反应,从理论上讲,这种反应在接种疫苗后可以继续适应和扩展。通过表位扩展或抗原级联反应,这种适应性可以不断完善治疗性免疫反应,使其更符合患者的肿瘤。这种主动、动态、迭代的过程可以在疫苗疗程完成后持续很长时间。最近的临床试验为治疗性疫苗的临床活性提供了进一步的了解,并为疫苗接种后的临床预期提供了指导。免疫反应的持续积极塑造,加上没有明显的副作用,使治疗性疫苗成为个性化治疗的终极选择。

相似文献

1
Therapeutic vaccines: the ultimate personalized therapy?
Hum Vaccin Immunother. 2013 Jan;9(1):219-21. doi: 10.4161/hv.22106. Epub 2012 Sep 20.
2
Therapeutic cancer vaccines: From initial findings to prospects.
Immunol Lett. 2018 Apr;196:11-21. doi: 10.1016/j.imlet.2018.01.011. Epub 2018 Feb 4.
3
Mutant MHC class II epitopes drive therapeutic immune responses to cancer.
Nature. 2015 Apr 30;520(7549):692-6. doi: 10.1038/nature14426. Epub 2015 Apr 22.
4
Personalized Immuno-Oncology.
Med Princ Pract. 2021;30(1):1-16. doi: 10.1159/000511107. Epub 2020 Aug 25.
5
Personalized cancer neoantigen vaccines come of age.
Theranostics. 2018 Jul 30;8(15):4238-4246. doi: 10.7150/thno.24387. eCollection 2018.
6
Towards the era of immune checkpoint inhibitors and personalized cancer immunotherapy.
Immunol Med. 2021 Mar;44(1):10-15. doi: 10.1080/25785826.2020.1785654. Epub 2020 Jul 9.
7
Personalized vaccines for cancer immunotherapy.
Science. 2018 Mar 23;359(6382):1355-1360. doi: 10.1126/science.aar7112.
8
Editorial: mRNA Vaccines and Immunotherapy in Oncology: A New Era for Personalized Medicine.
Med Sci Monit. 2021 May 17;27:e933088. doi: 10.12659/MSM.933088.
9
The perfect personalized cancer therapy: cancer vaccines against neoantigens.
J Exp Clin Cancer Res. 2018 Apr 20;37(1):86. doi: 10.1186/s13046-018-0751-1.
10
Prospect and progress of personalized peptide vaccinations for advanced cancers.
Expert Opin Biol Ther. 2016;16(5):689-98. doi: 10.1517/14712598.2016.1161752. Epub 2016 Mar 21.

引用本文的文献

1
MAGE-A4, NY-ESO-1 and SAGE mRNA expression rates and co-expression relationships in solid tumours.
BMC Cancer. 2020 Jun 29;20(1):606. doi: 10.1186/s12885-020-07098-4.
2
Targeting Host Innate and Adaptive Immunity to Achieve the Functional Cure of Chronic Hepatitis B.
Vaccines (Basel). 2020 May 11;8(2):216. doi: 10.3390/vaccines8020216.
3
Putting the Pieces Together: Completing the Mechanism of Action Jigsaw for Sipuleucel-T.
J Natl Cancer Inst. 2020 Jun 1;112(6):562-573. doi: 10.1093/jnci/djaa021.
6
Polyfunctional response by ImmTAC (IMCgp100) redirected CD8 and CD4 T cells.
Immunology. 2017 Nov;152(3):425-438. doi: 10.1111/imm.12779. Epub 2017 Aug 2.
7
Role of Antigen Spread and Distinctive Characteristics of Immunotherapy in Cancer Treatment.
J Natl Cancer Inst. 2017 Apr 1;109(4). doi: 10.1093/jnci/djw261.
9
Antigenic variability: Obstacles on the road to vaccines against traditionally difficult targets.
Hum Vaccin Immunother. 2016 Oct 2;12(10):2640-2648. doi: 10.1080/21645515.2016.1191718. Epub 2016 Jun 13.
10
Perspectives on sipuleucel-T: Its role in the prostate cancer treatment paradigm.
Oncoimmunology. 2015 Dec 10;5(4):e1107698. doi: 10.1080/2162402X.2015.1107698. eCollection 2016 Apr.

本文引用的文献

1
Cancer vaccines: should we be targeting patients with less aggressive disease?
Expert Rev Vaccines. 2012 Jun;11(6):721-31. doi: 10.1586/erv.12.39.
3
4
Endpoints, patient selection, and biomarkers in the design of clinical trials for cancer vaccines.
Cancer Immunol Immunother. 2012 Jan;61(1):109-17. doi: 10.1007/s00262-011-1141-0. Epub 2011 Nov 26.
5
Immunotherapy for prostate cancer: recent advances, lessons learned, and areas for further research.
Clin Cancer Res. 2011 Jun 15;17(12):3884-91. doi: 10.1158/1078-0432.CCR-10-2656.
6
7
Impact of tumour volume on the potential efficacy of therapeutic vaccines.
Curr Oncol. 2011 Jun;18(3):e150-7. doi: 10.3747/co.v18i3.783.
9
Sipuleucel-T immunotherapy for castration-resistant prostate cancer.
N Engl J Med. 2010 Jul 29;363(5):411-22. doi: 10.1056/NEJMoa1001294.
10
Therapeutic cancer vaccines in prostate cancer: the paradox of improved survival without changes in time to progression.
Oncologist. 2010;15(9):969-75. doi: 10.1634/theoncologist.2010-0129. Epub 2010 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验