Suppr超能文献

用于设计聚合物抗癌纳米药物的生物学原理。

Biological rationale for the design of polymeric anti-cancer nanomedicines.

机构信息

Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

J Drug Target. 2013 Jan;21(1):1-26. doi: 10.3109/1061186X.2012.723213. Epub 2012 Sep 26.

Abstract

Understanding the biological features of cancer is the basis for designing efficient anti-cancer nanomedicines. On one hand, important therapeutic targets for anti-cancer nanomedicines need to be identified based on cancer biology, to address the unmet medical needs. On the other hand, the unique pathophysiological properties of cancer affect the delivery and interactions of anti-cancer nanomedicines with their therapeutic targets. This review discusses several critical cancer biological properties that challenge the currently available anti-cancer treatments, including cancer heterogeneity and cancer stem cells, the complexcity of tumor microenvironment, and the inevitable cancer metastases. In addition, the biological bases of the enhanced permeability and retention (EPR) effect and tumor-specific active targeting, as well as the physiological barriers for passive and active targeting of anti-cancer nanomedicines are covered in this review. Correspondingly, possible nanomedicine strategies to target cancer heterogeneity, cancer stem cells and metastases, to overcome the challenges related to tumor passive targeting and tumor penetration, and to improve the interactions of therapeutic payloads with the therapeutic targets are discussed. The focus is mainly on the designs of polymeric anti-cancer nanomedicines.

摘要

了解癌症的生物学特征是设计高效抗癌纳米药物的基础。一方面,需要基于癌症生物学来确定抗癌纳米药物的重要治疗靶点,以满足未满足的医疗需求。另一方面,癌症的独特病理生理特性会影响抗癌纳米药物与其治疗靶点的传递和相互作用。本综述讨论了几种挑战现有抗癌治疗方法的关键癌症生物学特性,包括癌症异质性和癌症干细胞、肿瘤微环境的复杂性以及不可避免的癌症转移。此外,本综述还涵盖了增强型通透性和保留(EPR)效应和肿瘤特异性主动靶向的生物学基础,以及被动和主动靶向抗癌纳米药物的生理屏障。相应地,讨论了针对癌症异质性、癌症干细胞和转移的可能的纳米药物策略,以克服与肿瘤被动靶向和肿瘤穿透相关的挑战,并改善治疗有效载荷与治疗靶点的相互作用。重点主要放在聚合物抗癌纳米药物的设计上。

相似文献

1
Biological rationale for the design of polymeric anti-cancer nanomedicines.
J Drug Target. 2013 Jan;21(1):1-26. doi: 10.3109/1061186X.2012.723213. Epub 2012 Sep 26.
2
Can nanomedicines kill cancer stem cells?
Adv Drug Deliv Rev. 2013 Nov;65(13-14):1763-83. doi: 10.1016/j.addr.2013.09.016. Epub 2013 Oct 10.
4
To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
J Control Release. 2016 Dec 28;244(Pt A):108-121. doi: 10.1016/j.jconrel.2016.11.015. Epub 2016 Nov 18.
5
Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment.
Acc Chem Res. 2019 Jul 16;52(7):1771-1782. doi: 10.1021/acs.accounts.9b00136. Epub 2019 Jun 26.
6
DePEGylation strategies to increase cancer nanomedicine efficacy.
Nanoscale Horiz. 2019 Mar 1;4(2):378-387. doi: 10.1039/c8nh00417j. Epub 2018 Dec 11.
7
Nanomedicine therapeutic approaches to overcome cancer drug resistance.
Adv Drug Deliv Rev. 2013 Nov;65(13-14):1866-79. doi: 10.1016/j.addr.2013.09.019. Epub 2013 Oct 10.
8
Combining Nanomedicine and Immunotherapy.
Acc Chem Res. 2019 Jun 18;52(6):1543-1554. doi: 10.1021/acs.accounts.9b00148. Epub 2019 May 23.
9
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
Eur J Pharm Biopharm. 2015 Jun;93:52-79. doi: 10.1016/j.ejpb.2015.03.018. Epub 2015 Mar 23.
10
Extravasation of polymeric nanomedicines across tumor vasculature.
Adv Drug Deliv Rev. 2011 Jul 18;63(8):623-39. doi: 10.1016/j.addr.2010.11.005. Epub 2010 Dec 6.

引用本文的文献

2
Mesenchymal stem cells as therapeutic vehicles for glioma.
Cancer Gene Ther. 2024 Sep;31(9):1306-1314. doi: 10.1038/s41417-024-00775-7. Epub 2024 Apr 23.
3
Enhancing Targeted Therapy in Breast Cancer by Ultrasound-Responsive Nanocarriers.
Int J Mol Sci. 2023 Mar 13;24(6):5474. doi: 10.3390/ijms24065474.
4
Cell-penetrating peptide-conjugated copper complexes for redox-mediated anticancer therapy.
Front Pharmacol. 2022 Nov 15;13:1060827. doi: 10.3389/fphar.2022.1060827. eCollection 2022.
5
Using C-doped TiO Nanoparticles as a Novel Sonosensitizer for Cancer Treatment.
Antioxidants (Basel). 2020 Sep 17;9(9):880. doi: 10.3390/antiox9090880.
6
Polymer nanomedicines.
Adv Drug Deliv Rev. 2020;156:40-64. doi: 10.1016/j.addr.2020.07.020. Epub 2020 Jul 28.
7
Tumor-Targeting Glycol Chitosan Nanoparticles for Image-Guided Surgery of Rabbit Orthotopic VX2 Lung Cancer.
Pharmaceutics. 2020 Jul 3;12(7):621. doi: 10.3390/pharmaceutics12070621.
8
Novel nanomedicine with a chemical-exchange saturation transfer effect for breast cancer treatment in vivo.
J Nanobiotechnology. 2019 Dec 17;17(1):123. doi: 10.1186/s12951-019-0557-0.
9
Polymer-drug conjugate therapeutics: advances, insights and prospects.
Nat Rev Drug Discov. 2019 Apr;18(4):273-294. doi: 10.1038/s41573-018-0005-0.
10
Tumor targeting via EPR: Strategies to enhance patient responses.
Adv Drug Deliv Rev. 2018 May;130:17-38. doi: 10.1016/j.addr.2018.07.007. Epub 2018 Jul 19.

本文引用的文献

1
Anticancer nanomedicine and tumor vascular permeability; Where is the missing link?
J Control Release. 2012 Dec 28;164(3):265-75. doi: 10.1016/j.jconrel.2012.07.013. Epub 2012 Jul 16.
2
Analysis on the current status of targeted drug delivery to tumors.
J Control Release. 2012 Dec 10;164(2):108-14. doi: 10.1016/j.jconrel.2012.07.010. Epub 2012 Jul 16.
3
Brentuximab vedotin for relapsed or refractory CD30+ hematologic malignancies: the German Hodgkin Study Group experience.
Blood. 2012 Aug 16;120(7):1470-2. doi: 10.1182/blood-2012-05-430918. Epub 2012 Jul 11.
4
HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity.
J Control Release. 2012 Dec 28;164(3):346-54. doi: 10.1016/j.jconrel.2012.06.029. Epub 2012 Jun 30.
5
Peptides as targeting elements and tissue penetration devices for nanoparticles.
Adv Mater. 2012 Jul 24;24(28):3747-56. doi: 10.1002/adma.201200454. Epub 2012 May 2.
6
Cancer stem cells and drug resistance: the potential of nanomedicine.
Nanomedicine (Lond). 2012 Apr;7(4):597-615. doi: 10.2217/nnm.12.22.
8
Accessories to the crime: functions of cells recruited to the tumor microenvironment.
Cancer Cell. 2012 Mar 20;21(3):309-22. doi: 10.1016/j.ccr.2012.02.022.
9
Tumor microenvironment: a main actor in the metastasis process.
Clin Exp Metastasis. 2012 Apr;29(4):381-95. doi: 10.1007/s10585-012-9457-5. Epub 2012 Feb 10.
10
Treating metastatic cancer with nanotechnology.
Nat Rev Cancer. 2011 Dec 23;12(1):39-50. doi: 10.1038/nrc3180.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验