Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona, Spain.
BMC Med Inform Decis Mak. 2012 Oct 3;12:112. doi: 10.1186/1472-6947-12-112.
Influenza is a well known and common human respiratory infection, causing significant morbidity and mortality every year. Despite Influenza variability, fast and reliable outbreak detection is required for health resource planning. Clinical health records, as published by the Diagnosticat database in Catalonia, host useful data for probabilistic detection of influenza outbreaks.
This paper proposes a statistical method to detect influenza epidemic activity. Non-epidemic incidence rates are modeled against the exponential distribution, and the maximum likelihood estimate for the decaying factor λ is calculated. The sequential detection algorithm updates the parameter as new data becomes available. Binary epidemic detection of weekly incidence rates is assessed by Kolmogorov-Smirnov test on the absolute difference between the empirical and the cumulative density function of the estimated exponential distribution with significance level 0 ≤ α ≤ 1.
The main advantage with respect to other approaches is the adoption of a statistically meaningful test, which provides an indicator of epidemic activity with an associated probability. The detection algorithm was initiated with parameter λ0 = 3.8617 estimated from the training sequence (corresponding to non-epidemic incidence rates of the 2008-2009 influenza season) and sequentially updated. Kolmogorov-Smirnov test detected the following weeks as epidemic for each influenza season: 50-10 (2008-2009 season), 38-50 (2009-2010 season), weeks 50-9 (2010-2011 season) and weeks 3 to 12 for the current 2011-2012 season.
Real medical data was used to assess the validity of the approach, as well as to construct a realistic statistical model of weekly influenza incidence rates in non-epidemic periods. For the tested data, the results confirmed the ability of the algorithm to detect the start and the end of epidemic periods. In general, the proposed test could be applied to other data sets to quickly detect influenza outbreaks. The sequential structure of the test makes it suitable for implementation in many platforms at a low computational cost without requiring to store large data sets.
流感是一种众所周知的常见人类呼吸道感染,每年都会导致大量发病率和死亡率。尽管流感具有变异性,但仍需要快速可靠地检测爆发,以便进行卫生资源规划。临床健康记录,如加泰罗尼亚诊断数据库中公布的记录,为流感爆发的概率检测提供了有用的数据。
本文提出了一种用于检测流感流行活动的统计方法。利用指数分布对非流行发病率进行建模,并计算衰减因子 λ 的最大似然估计值。随着新数据的出现,顺序检测算法会更新参数。通过对经验分布与估计指数分布的累积密度函数之间的绝对差值进行 Kolmogorov-Smirnov 检验,评估每周发病率的二进制疫情检测,置信水平为 0≤α≤1。
与其他方法相比,本方法的主要优势在于采用了具有统计学意义的检验,该检验提供了一个与概率相关的疫情活动指标。检测算法从训练序列中使用 λ0=3.8617 作为参数启动,该值是根据 2008-2009 流感季节的非流行发病率估计得到的,并进行了顺序更新。Kolmogorov-Smirnov 检验检测到以下各周为每个流感季节的流行周:2008-2009 季节为 50-10 周,2009-2010 季节为 38-50 周,2010-2011 季节为 50-9 周,2011-2012 季节为 3-12 周。
使用真实的医疗数据评估了该方法的有效性,并构建了非流行期每周流感发病率的现实统计模型。对于测试数据,结果证实了该算法检测疫情开始和结束的能力。一般来说,该提议的测试可以应用于其他数据集,以快速检测流感爆发。测试的顺序结构使其适合在许多平台上以低计算成本实施,而无需存储大型数据集。