Suppr超能文献

第二信使调控生物膜形成:c-di-GMP 效应子系统研究的突破。

Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems.

机构信息

Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA.

出版信息

Annu Rev Cell Dev Biol. 2012;28:439-62. doi: 10.1146/annurev-cellbio-101011-155705.

Abstract

The second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) has emerged as a broadly conserved intracellular signaling molecule. This soluble molecule is important for controlling biofilm formation, adhesion, motility, virulence, and cell morphogenesis in diverse bacterial species. But how is the typical bacterial cell able to coordinate the actions of upward of 50 proteins involved in synthesizing, degrading, and binding c-di-GMP? Understanding the specificity of c-di-GMP signaling in the context of so many enzymes involved in making, breaking, and binding the second messenger will be possible only through mechanistic studies of its output systems. Here we discuss three newly characterized c-di-GMP effector systems that are best understood in terms of molecular and structural detail. As they are conserved across many bacterial species, they likely will serve as central paradigms for c-di-GMP output systems and contribute to our understanding of how bacteria control critical aspects of their biology.

摘要

双(3′-5′)-环二鸟苷酸(c-di-GMP)作为一种广泛保守的细胞内信号分子而出现。这种可溶性分子对于控制不同细菌物种中的生物膜形成、粘附、运动性、毒力和细胞形态发生非常重要。但是,典型的细菌细胞如何协调参与合成、降解和结合 c-di-GMP 的 50 多种蛋白质的作用?只有通过对其输出系统进行机制研究,才能理解在涉及制造、破坏和结合第二信使的如此多的酶的情况下 c-di-GMP 信号的特异性。在这里,我们讨论了三个新表征的 c-di-GMP 效应子系统,从分子和结构细节方面来看,它们是最容易理解的。由于它们在许多细菌物种中都保守,因此它们可能作为 c-di-GMP 输出系统的中心范例,并有助于我们理解细菌如何控制其生物学的关键方面。

相似文献

1
Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems.
Annu Rev Cell Dev Biol. 2012;28:439-62. doi: 10.1146/annurev-cellbio-101011-155705.
2
Reciprocal c-di-GMP signaling: Incomplete flagellum biogenesis triggers c-di-GMP signaling pathways that promote biofilm formation.
PLoS Genet. 2020 Mar 16;16(3):e1008703. doi: 10.1371/journal.pgen.1008703. eCollection 2020 Mar.
3
The ins and outs of cyclic di-GMP signaling in Vibrio cholerae.
Curr Opin Microbiol. 2017 Apr;36:20-29. doi: 10.1016/j.mib.2017.01.002. Epub 2017 Feb 5.
6
DncV Synthesizes Cyclic GMP-AMP and Regulates Biofilm Formation and Motility in ECOR31.
mBio. 2019 Mar 5;10(2):e02492-18. doi: 10.1128/mBio.02492-18.
8
A Conserved Regulatory Circuit Controls Large Adhesins in Vibrio cholerae.
mBio. 2019 Dec 3;10(6):e02822-19. doi: 10.1128/mBio.02822-19.
9
Roles of the second messenger c-di-GMP in bacteria: Focusing on the topics of flagellar regulation and Vibrio spp.
Genes Cells. 2022 Mar;27(3):157-172. doi: 10.1111/gtc.12921. Epub 2022 Jan 24.
10
Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation.
Mol Microbiol. 2004 Aug;53(3):857-69. doi: 10.1111/j.1365-2958.2004.04155.x.

引用本文的文献

3
Insertion of a Divergent GAF-like Domain Defines a Novel Family of YcgR Homologues That Bind c-di-GMP in .
ACS Omega. 2025 Jan 21;10(4):3988-4006. doi: 10.1021/acsomega.4c09917. eCollection 2025 Feb 4.
4
An evolutionarily conserved metabolite inhibits biofilm formation in Escherichia coli K-12.
Nat Commun. 2024 Nov 21;15(1):10079. doi: 10.1038/s41467-024-54501-w.
5
Identification of novel genetic factors that regulate c-di-AMP production in using a riboswitch-based biosensor.
mSphere. 2024 Oct 29;9(10):e0032124. doi: 10.1128/msphere.00321-24. Epub 2024 Sep 17.
6
Multiplexed sequential imaging in living cells with orthogonal fluorogenic RNA aptamer/dye pairs.
Nucleic Acids Res. 2024 Aug 27;52(15):e67. doi: 10.1093/nar/gkae551.
7
Biofilm inhibition/eradication: exploring strategies and confronting challenges in combatting biofilm.
Arch Microbiol. 2024 Apr 14;206(5):212. doi: 10.1007/s00203-024-03938-0.
9
An O-sensing diguanylate cyclase broadly affects the aerobic transcriptome in the phytopathogen .
Front Microbiol. 2023 Jul 7;14:1134742. doi: 10.3389/fmicb.2023.1134742. eCollection 2023.
10
Linking microbial slime community structure with abiotic factors and antifouling strategy in hydroelectric cooling systems.
Braz J Microbiol. 2023 Sep;54(3):1547-1557. doi: 10.1007/s42770-023-01020-3. Epub 2023 Jun 10.

本文引用的文献

1
'Life-style' control networks in Escherichia coli: signaling by the second messenger c-di-GMP.
J Biotechnol. 2012 Jul 31;160(1-2):10-6. doi: 10.1016/j.jbiotec.2011.12.024. Epub 2011 Dec 31.
7
Systematic analysis of diguanylate cyclases that promote biofilm formation by Pseudomonas fluorescens Pf0-1.
J Bacteriol. 2011 Sep;193(18):4685-98. doi: 10.1128/JB.05483-11. Epub 2011 Jul 15.
8
Structural basis of differential ligand recognition by two classes of bis-(3'-5')-cyclic dimeric guanosine monophosphate-binding riboswitches.
Proc Natl Acad Sci U S A. 2011 May 10;108(19):7757-62. doi: 10.1073/pnas.1018857108. Epub 2011 Apr 25.
9
Analysis of the Borrelia burgdorferi cyclic-di-GMP-binding protein PlzA reveals a role in motility and virulence.
Infect Immun. 2011 May;79(5):1815-25. doi: 10.1128/IAI.00075-11. Epub 2011 Feb 28.
10
Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing.
J Mol Biol. 2011 Apr 15;407(5):633-9. doi: 10.1016/j.jmb.2011.02.019. Epub 2011 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验