Suppr超能文献

沉默的大多数——TRPV1 驱动心血管 NTS 内无髓初级传入的“自发性”传递。

The unsilent majority-TRPV1 drives "spontaneous" transmission of unmyelinated primary afferents within cardiorespiratory NTS.

机构信息

Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239-3098, USA.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2012 Dec 15;303(12):R1207-16. doi: 10.1152/ajpregu.00398.2012. Epub 2012 Oct 17.

Abstract

Cranial primary afferent sensory neurons figure importantly in homeostatic control of visceral organ systems. Of the two broad classes of visceral afferents, the role of unmyelinated or C-type class remains poorly understood. This review contrasts key aspects of peripheral discharge properties of C-fiber afferents and their glutamate transmission mechanisms within the solitary tract nucleus (NTS). During normal prevailing conditions, most information arrives at the NTS through myelinated A-type nerves. However, most of visceral afferent axons (75-90%) in NTS are unmyelinated, C-type axons. Centrally, C-type solitary tract (ST) afferent terminals have presynaptic transient receptor potential vanilloid type 1 (TRPV1) receptors. Capsaicin activation of TRPV1 blocks phasic or synchronous release of glutamate but facilitates release of glutamate from a separate pool of vesicles. This TRPV1-operated pool of vesicles is active at normal temperatures and is responsible for actively driving a 10-fold higher release of glutamate at TRPV1 compared with TRPV1- terminals even in the absence of afferent action potentials. This novel TRPV1 mechanism is responsible for an additional asynchronous release of glutamate that is not present in myelinated terminals. The NTS is rich with presynaptic G protein-coupled receptors, and the implications of TRPV1-operated glutamate offer unique targets for signaling in C-type sensory afferent terminals from neuropeptides, inflammatory mediators, lipid metabolites, cytokines, and cannabinoids. From a homeostatic view, this combination could have broad implications for integration in chronic pathological disturbances in which the numeric dominance of C-type endings and TRPV1 would broadly disturb multisystem control mechanisms.

摘要

颅神经初级传入感觉神经元在维持内脏器官系统的稳态控制中起着重要作用。在两类广泛的内脏传入纤维中,未髓鞘或 C 型纤维的作用仍知之甚少。本综述对比了 C 纤维传入纤维的外周放电特性和其在孤束核(NTS)内谷氨酸传递机制的关键方面。在正常流行条件下,大多数信息通过有髓鞘 A 型神经到达 NTS。然而,NTS 中的大多数内脏传入轴突(75-90%)是无髓鞘的 C 型轴突。在中枢,C 型孤束(ST)传入末端具有瞬时受体电位香草酸 1 型(TRPV1)受体。辣椒素激活 TRPV1 可阻断谷氨酸的相位或同步释放,但促进来自另一种囊泡池的谷氨酸释放。这种 TRPV1 操作的囊泡池在正常温度下活跃,并负责在 TRPV1 处比 TRPV1 末端主动驱动谷氨酸释放增加 10 倍,即使在没有传入动作电位的情况下也是如此。这种新的 TRPV1 机制负责一种另外的非同步释放的谷氨酸,在有髓鞘末端不存在。NTS 富含突触前 G 蛋白偶联受体,TRPV1 操作的谷氨酸的影响为从神经肽、炎症介质、脂质代谢物、细胞因子和大麻素中提供了 C 型感觉传入末端信号的独特靶点。从稳态的角度来看,这种组合可能对慢性病理紊乱中的整合具有广泛的影响,其中 C 型末端和 TRPV1 的数量优势将广泛扰乱多系统控制机制。

相似文献

1
The unsilent majority-TRPV1 drives "spontaneous" transmission of unmyelinated primary afferents within cardiorespiratory NTS.
Am J Physiol Regul Integr Comp Physiol. 2012 Dec 15;303(12):R1207-16. doi: 10.1152/ajpregu.00398.2012. Epub 2012 Oct 17.
2
TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.
PLoS One. 2011;6(9):e25015. doi: 10.1371/journal.pone.0025015. Epub 2011 Sep 20.
3
Distinct Calcium Sources Support Multiple Modes of Synaptic Release from Cranial Sensory Afferents.
J Neurosci. 2016 Aug 24;36(34):8957-66. doi: 10.1523/JNEUROSCI.1028-16.2016.
4
Thermally active TRPV1 tonically drives central spontaneous glutamate release.
J Neurosci. 2010 Oct 27;30(43):14470-5. doi: 10.1523/JNEUROSCI.2557-10.2010.
5
GABA(B)-mediated inhibition of multiple modes of glutamate release in the nucleus of the solitary tract.
J Neurophysiol. 2011 Oct;106(4):1833-40. doi: 10.1152/jn.00476.2011. Epub 2011 Jul 6.
7
Dedicated C-fibre viscerosensory pathways to central nucleus of the amygdala.
J Physiol. 2017 Feb 1;595(3):901-917. doi: 10.1113/JP272898. Epub 2016 Oct 25.
8
External QX-314 inhibits evoked cranial primary afferent synaptic transmission independent of TRPV1.
J Neurophysiol. 2014 Dec 1;112(11):2697-706. doi: 10.1152/jn.00316.2014. Epub 2014 Sep 3.
9
Dedicated C-fiber vagal sensory afferent pathways to the paraventricular nucleus of the hypothalamus.
Brain Res. 2021 Oct 15;1769:147625. doi: 10.1016/j.brainres.2021.147625. Epub 2021 Aug 17.
10
Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus.
Front Neurosci. 2013 Jan 10;6:191. doi: 10.3389/fnins.2012.00191. eCollection 2012.

引用本文的文献

1
TRPV1 enhances cholecystokinin signaling in primary vagal afferent neurons and mediates the central effects on spontaneous glutamate release in the NTS.
Am J Physiol Cell Physiol. 2024 Jan 1;326(1):C112-C124. doi: 10.1152/ajpcell.00409.2023. Epub 2023 Dec 4.
2
Functional knockout of the TRPV1 channel has no effect on the exercise pressor reflex in rats.
J Physiol. 2023 Dec;601(23):5241-5256. doi: 10.1113/JP285267. Epub 2023 Oct 25.
3
Vagus nerve stimulation activates nucleus of solitary tract neurons via supramedullary pathways.
J Physiol. 2021 Dec;599(23):5261-5279. doi: 10.1113/JP282064. Epub 2021 Nov 17.
4
Dedicated C-fiber vagal sensory afferent pathways to the paraventricular nucleus of the hypothalamus.
Brain Res. 2021 Oct 15;1769:147625. doi: 10.1016/j.brainres.2021.147625. Epub 2021 Aug 17.
5
Understanding diverse TRPV1 signaling - an update.
F1000Res. 2019 Nov 25;8. doi: 10.12688/f1000research.20795.1. eCollection 2019.
6
5-HTR-sourced calcium enhances glutamate release from a distinct vesicle pool.
Brain Res. 2019 Oct 15;1721:146346. doi: 10.1016/j.brainres.2019.146346. Epub 2019 Jul 23.
8
TRPV1 channels contribute to spontaneous glutamate release in nucleus tractus solitarii following chronic intermittent hypoxia.
J Neurophysiol. 2019 Mar 1;121(3):881-892. doi: 10.1152/jn.00536.2018. Epub 2019 Jan 2.
9
Direct Anandamide Activation of TRPV1 Produces Divergent Calcium and Current Responses.
Front Mol Neurosci. 2017 Jun 21;10:200. doi: 10.3389/fnmol.2017.00200. eCollection 2017.
10
Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract.
Am J Physiol Heart Circ Physiol. 2017 Aug 1;313(2):H354-H367. doi: 10.1152/ajpheart.00070.2017. Epub 2017 May 5.

本文引用的文献

2
Orphan GPCRs and neuromodulation.
Neuron. 2012 Oct 4;76(1):12-21. doi: 10.1016/j.neuron.2012.09.009.
3
The role of non-canonical SNAREs in synaptic vesicle recycling.
Cell Logist. 2012 Jan 1;2(1):20-27. doi: 10.4161/cl.20114.
4
Expression of the P/Q (Cav2.1) calcium channel in nodose sensory neurons and arterial baroreceptors.
Neurosci Lett. 2012 Jun 27;520(1):38-42. doi: 10.1016/j.neulet.2012.05.026. Epub 2012 May 14.
5
TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.
PLoS One. 2011;6(9):e25015. doi: 10.1371/journal.pone.0025015. Epub 2011 Sep 20.
7
GABA(B)-mediated inhibition of multiple modes of glutamate release in the nucleus of the solitary tract.
J Neurophysiol. 2011 Oct;106(4):1833-40. doi: 10.1152/jn.00476.2011. Epub 2011 Jul 6.
8
Vanilloid, purinergic, and CCK receptors activate glutamate release on single neurons of the nucleus tractus solitarius centralis.
Am J Physiol Regul Integr Comp Physiol. 2011 Aug;301(2):R394-401. doi: 10.1152/ajpregu.00054.2011. Epub 2011 May 4.
9
Use-dependent AMPA receptor block reveals segregation of spontaneous and evoked glutamatergic neurotransmission.
J Neurosci. 2011 Apr 6;31(14):5378-82. doi: 10.1523/JNEUROSCI.5234-10.2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验