Suppr超能文献

根据稳态扰动数据拟合布尔网络。

Fitting Boolean networks from steady state perturbation data.

作者信息

Almudevar Anthony, McCall Matthew N, McMurray Helene, Land Hartmut

机构信息

University of Rochester, USA.

出版信息

Stat Appl Genet Mol Biol. 2011 Oct 5;10(1):/j/sagmb.2011.10.issue-1/1544-6115.1727/1544-6115.1727.xml. doi: 10.2202/1544-6115.1727.

Abstract

Gene perturbation experiments are commonly used for the reconstruction of gene regulatory networks. Typical experimental methodology imposes persistent changes on the network. The resulting data must therefore be interpreted as a steady state from an altered gene regulatory network, rather than a direct observation of the original network. In this article an implicit modeling methodology is proposed in which the unperturbed network of interest is scored by first modeling the persistent perturbation, then predicting the steady state, which may then be compared to the observed data. This results in a many-to-one inverse problem, so a computational Bayesian approach is used to assess model uncertainty. The methodology is first demonstrated on a number of synthetic networks. It is shown that the Bayesian approach correctly assigns high posterior probability to the network structure and steady state behavior. Further, it is demonstrated that where uncertainty of model features is indicated, the uncertainty may be accurately resolved with further perturbation experiments. The methodology is then applied to the modeling of a gene regulatory network using perturbation data from nine genes which have been shown to respond synergistically to known oncogenic mutations. A hypothetical model emerges which conforms to reported regulatory properties of these genes. Furthermore, the Bayesian methodology is shown to be consistent in the sense that multiple randomized applications of the fitting algorithm converge to an approximately common posterior density on the space of models. Such consistency is generally not feasible for algorithms which report only single models. We conclude that fully Bayesian methods, coupled with models which accurately account for experimental constraints, are a suitable tool for the inference of gene regulatory networks, in terms of accuracy, estimation of model uncertainty, and experimental design.

摘要

基因扰动实验通常用于基因调控网络的重建。典型的实验方法会对网络施加持续的变化。因此,所得数据必须被解释为来自改变后的基因调控网络的稳态,而不是对原始网络的直接观察。在本文中,我们提出了一种隐式建模方法,其中通过首先对持续扰动进行建模,然后预测稳态来对感兴趣的未扰动网络进行评分,然后可以将其与观察到的数据进行比较。这导致了一个多对一的逆问题,因此使用计算贝叶斯方法来评估模型不确定性。该方法首先在一些合成网络上进行了演示。结果表明,贝叶斯方法正确地将高后验概率分配给网络结构和稳态行为。此外,结果表明,在指出模型特征的不确定性的情况下,可以通过进一步的扰动实验准确地解决不确定性。然后,该方法应用于使用来自九个基因的扰动数据对基因调控网络进行建模,这些基因已被证明对已知致癌突变有协同反应。出现了一个符合这些基因报道的调控特性的假设模型。此外,贝叶斯方法在拟合算法的多次随机应用在模型空间上收敛到近似共同的后验密度的意义上被证明是一致的。对于只报告单个模型的算法来说,这种一致性通常是不可行的。我们得出结论,就准确性、模型不确定性估计和实验设计而言,完全贝叶斯方法与准确考虑实验约束的模型相结合,是推断基因调控网络的合适工具。

相似文献

1
Fitting Boolean networks from steady state perturbation data.
Stat Appl Genet Mol Biol. 2011 Oct 5;10(1):/j/sagmb.2011.10.issue-1/1544-6115.1727/1544-6115.1727.xml. doi: 10.2202/1544-6115.1727.
2
A full bayesian approach for boolean genetic network inference.
PLoS One. 2014 Dec 31;9(12):e115806. doi: 10.1371/journal.pone.0115806. eCollection 2014.
3
Simulation study in Probabilistic Boolean Network models for genetic regulatory networks.
Int J Data Min Bioinform. 2007;1(3):217-40. doi: 10.1504/ijdmb.2007.011610.
4
An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks.
Bioinformatics. 2007 Jun 15;23(12):1511-8. doi: 10.1093/bioinformatics/btm142. Epub 2007 Apr 26.
5
Bayesian probabilistic network modeling from multiple independent replicates.
BMC Bioinformatics. 2012 Jun 11;13 Suppl 9(Suppl 9):S6. doi: 10.1186/1471-2105-13-S9-S6.
6
Using complexity for the estimation of Bayesian networks.
Stat Appl Genet Mol Biol. 2006;5:Article21. doi: 10.2202/1544-6115.1208. Epub 2006 Aug 31.
7
A review on the computational approaches for gene regulatory network construction.
Comput Biol Med. 2014 May;48:55-65. doi: 10.1016/j.compbiomed.2014.02.011. Epub 2014 Feb 24.
9
A Probabilistic Framework for Molecular Network Structure Inference by Means of Mechanistic Modeling.
IEEE/ACM Trans Comput Biol Bioinform. 2019 Nov-Dec;16(6):1843-1854. doi: 10.1109/TCBB.2018.2825327. Epub 2018 Apr 10.
10
An experimental design framework for Markovian gene regulatory networks under stationary control policy.
BMC Syst Biol. 2018 Dec 21;12(Suppl 8):137. doi: 10.1186/s12918-018-0649-8.

引用本文的文献

2
A novel constrained genetic algorithm-based Boolean network inference method from steady-state gene expression data.
Bioinformatics. 2021 Jul 12;37(Suppl_1):i383-i391. doi: 10.1093/bioinformatics/btab295.
3
Multiple imputation and direct estimation for qPCR data with non-detects.
BMC Bioinformatics. 2020 Nov 26;21(1):545. doi: 10.1186/s12859-020-03807-9.
4
Computational discovery of dynamic cell line specific Boolean networks from multiplex time-course data.
PLoS Comput Biol. 2018 Oct 29;14(10):e1006538. doi: 10.1371/journal.pcbi.1006538. eCollection 2018 Oct.
5
Estimation of Gene Regulatory Networks.
Postdoc J. 2013 Jan;1(1):60-69.
6
8
On non-detects in qPCR data.
Bioinformatics. 2014 Aug 15;30(16):2310-6. doi: 10.1093/bioinformatics/btu239. Epub 2014 Apr 23.

本文引用的文献

1
Selection of statistical thresholds in graphical models.
EURASIP J Bioinform Syst Biol. 2009;2009(1):878013. doi: 10.1155/2009/878013. Epub 2010 Mar 4.
2
Synergistic response to oncogenic mutations defines gene class critical to cancer phenotype.
Nature. 2008 Jun 19;453(7198):1112-6. doi: 10.1038/nature06973. Epub 2008 May 25.
3
Knocking down Wnt9a mRNA levels increases cellular proliferation.
Mol Biol Rep. 2008 Jun;35(2):73-9. doi: 10.1007/s11033-007-9055-9. Epub 2007 Mar 10.
4
Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer cell motility.
Nat Struct Mol Biol. 2007 Mar;14(3):215-23. doi: 10.1038/nsmb1208. Epub 2007 Feb 18.
5
A graphical approach to relatedness inference.
Theor Popul Biol. 2007 Mar;71(2):213-29. doi: 10.1016/j.tpb.2006.10.005. Epub 2006 Oct 27.
6
7
Generating Boolean networks with a prescribed attractor structure.
Bioinformatics. 2005 Nov 1;21(21):4021-5. doi: 10.1093/bioinformatics/bti664. Epub 2005 Sep 8.
8
Causal protein-signaling networks derived from multiparameter single-cell data.
Science. 2005 Apr 22;308(5721):523-9. doi: 10.1126/science.1105809.
9
A Bayesian connectivity-based approach to constructing probabilistic gene regulatory networks.
Bioinformatics. 2004 Nov 22;20(17):2918-27. doi: 10.1093/bioinformatics/bth318. Epub 2004 May 14.
10
Reconstructing pathways in large genetic networks from genetic perturbations.
J Comput Biol. 2004;11(1):53-60. doi: 10.1089/106652704773416885.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验