Suppr超能文献

鉴定导致幼发亨廷顿氏高血压大鼠的肌肉生成反应和脑血流自身调节受损的大鼠 1 号染色体区域。

Identification of a region of rat chromosome 1 that impairs the myogenic response and autoregulation of cerebral blood flow in fawn-hooded hypertensive rats.

机构信息

Human and Molecular Genetics Center, Milwaukee, WI, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2013 Jan 15;304(2):H311-7. doi: 10.1152/ajpheart.00622.2012. Epub 2012 Nov 9.

Abstract

This study examined the effects of transfer of a 2.4-Mbp region of rat chromosome 1 (RNO1) from Brown Norway (BN) into fawn-hooded hypertensive (FHH) rats on autoregulation (AR) of cerebral blood flow (CBF) and the myogenic response of middle cerebral arteries (MCAs). AR of CBF was poor in FHH and FHH.1(BN) AR(-) congenic strains that excluded the critical 2.4-Mbp region. In contrast, AR was restored in FHH.1(BN) AR(+) congenic strains that included this region. The diameter of MCAs of FHH rats increased from 140 ± 14 to 157 ± 18 μm when transmural pressure was increased from 40 to 140 mmHg, but it decreased from 137 ± 5 to 94 ± 7 μm in FHH.1(BN) AR(+) congenic strains. Transient occlusion of MCAs reduced CBF by 80% in all strains. However, the hyperemic response following ischemia was significantly greater in FHH and AR(-) rats than that seen in AR(+) congenic strains (AR(-), 173 ± 11% vs. AR(+), 124 ± 5%). Infarct size and edema formation were also significantly greater in an AR(-) strain (38.6 ± 2.6 and 12.1 ± 2%) than in AR(+) congenic strains (27.6 ± 1.8 and 6.5 ± 0.9%). These results indicate that there is a gene in the 2.4-Mbp region of RNO1 that alters the development of myogenic tone in cerebral arteries. Transfer of this region from BN to FHH rats restores AR of CBF and vascular reactivity and reduces cerebral injury after transient occlusion and reperfusion of the MCA.

摘要

本研究探讨了将大鼠染色体 1(RNO1)的 2.4-Mbp 区域从褐鼠(BN)转移到 fawn-hooded 高血压(FHH)大鼠对脑血流(CBF)自动调节(AR)和大脑中动脉(MCAs)的肌源性反应的影响。FHH 和排除关键 2.4-Mbp 区域的 FHH.1(BN) AR(-)同基因系的 AR 较差。相比之下,包括该区域的 FHH.1(BN) AR(+)同基因系中恢复了 AR。当跨壁压从 40mmHg 增加到 140mmHg 时,FHH 大鼠的 MCA 直径从 140±14μm 增加到 157±18μm,但在 FHH.1(BN) AR(+)同基因系中,它从 137±5μm 减小到 94±7μm。MCA 的短暂闭塞使所有系的 CBF 减少 80%。然而,在 AR(-)和 AR(-)大鼠中,缺血后的充血反应明显大于 AR(+)同基因系(AR(-),173±11%vs.AR(+),124±5%)。在 AR(-)系中,梗塞大小和水肿形成也明显大于 AR(+)同基因系(38.6±2.6 和 12.1±2%vs.27.6±1.8 和 6.5±0.9%)。这些结果表明,RNO1 的 2.4-Mbp 区域存在一个改变大脑动脉肌源性张力发育的基因。从 BN 向 FHH 大鼠转移该区域可恢复 CBF 和血管反应性,并减少 MCA 短暂闭塞和再灌注后的脑损伤。

相似文献

1
Identification of a region of rat chromosome 1 that impairs the myogenic response and autoregulation of cerebral blood flow in fawn-hooded hypertensive rats.
Am J Physiol Heart Circ Physiol. 2013 Jan 15;304(2):H311-7. doi: 10.1152/ajpheart.00622.2012. Epub 2012 Nov 9.
2
Enhanced large conductance K+ channel activity contributes to the impaired myogenic response in the cerebral vasculature of Fawn Hooded Hypertensive rats.
Am J Physiol Heart Circ Physiol. 2014 Apr 1;306(7):H989-H1000. doi: 10.1152/ajpheart.00636.2013. Epub 2014 Jan 24.
3
Genetic basis of the impaired renal myogenic response in FHH rats.
Am J Physiol Renal Physiol. 2013 Mar 1;304(5):F565-77. doi: 10.1152/ajprenal.00404.2012. Epub 2012 Dec 5.
4
Temporal characterization of the development of renal injury in FHH rats and FHH.1BN congenic strains.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F330-8. doi: 10.1152/ajprenal.00261.2010. Epub 2010 Nov 3.
5
Elevated K+ channel activity opposes vasoconstrictor response to serotonin in cerebral arteries of the Fawn Hooded Hypertensive rat.
Physiol Genomics. 2017 Jan 1;49(1):27-36. doi: 10.1152/physiolgenomics.00072.2016. Epub 2016 Oct 27.
7
Knockdown of Add3 impairs the myogenic response of renal afferent arterioles and middle cerebral arteries.
Am J Physiol Renal Physiol. 2017 Jun 1;312(6):F971-F981. doi: 10.1152/ajprenal.00529.2016. Epub 2016 Dec 7.
8
Identification of a QTL on chromosome 1 for impaired autoregulation of RBF in fawn-hooded hypertensive rats.
Am J Physiol Renal Physiol. 2006 May;290(5):F1213-21. doi: 10.1152/ajprenal.00335.2005. Epub 2005 Nov 22.
9
Impaired myogenic response and autoregulation of cerebral blood flow is rescued in CYP4A1 transgenic Dahl salt-sensitive rat.
Am J Physiol Regul Integr Comp Physiol. 2015 Mar 1;308(5):R379-90. doi: 10.1152/ajpregu.00256.2014. Epub 2014 Dec 24.
10
Congenic removal of a QTL for blood pressure attenuates infarct size produced by middle cerebral artery occlusion in hypertensive rats.
Physiol Genomics. 2007 Jun 19;30(1):69-73. doi: 10.1152/physiolgenomics.00149.2006. Epub 2007 Feb 27.

引用本文的文献

1
The adducin saga: pleiotropic genomic targets for precision medicine in human hypertension-vascular, renal, and cognitive diseases.
Physiol Genomics. 2022 Feb 1;54(2):58-70. doi: 10.1152/physiolgenomics.00119.2021. Epub 2021 Dec 3.
2
Impaired renal hemodynamics and glomerular hyperfiltration contribute to hypertension-induced renal injury.
Am J Physiol Renal Physiol. 2020 Oct 1;319(4):F624-F635. doi: 10.1152/ajprenal.00239.2020. Epub 2020 Aug 24.
3
Mechanisms of cognitive dysfunction in CKD.
Nat Rev Nephrol. 2020 Aug;16(8):452-469. doi: 10.1038/s41581-020-0266-9. Epub 2020 Mar 31.
4
A Mutation in -Adducin Impairs Autoregulation of Renal Blood Flow and Promotes the Development of Kidney Disease.
J Am Soc Nephrol. 2020 Apr;31(4):687-700. doi: 10.1681/ASN.2019080784. Epub 2020 Feb 6.
5
Knockout of Dual-Specificity Protein Phosphatase 5 Protects Against Hypertension-Induced Renal Injury.
J Pharmacol Exp Ther. 2019 Aug;370(2):206-217. doi: 10.1124/jpet.119.258954. Epub 2019 May 22.
6
Cerebral Autoregulation in Hypertension and Ischemic Stroke: A Mini Review.
J Pharm Sci Exp Pharmacol. 2017;2017(1):21-27. Epub 2017 Oct 27.
7
Cerebral microhemorrhages: mechanisms, consequences, and prevention.
Am J Physiol Heart Circ Physiol. 2017 Jun 1;312(6):H1128-H1143. doi: 10.1152/ajpheart.00780.2016. Epub 2017 Mar 17.
8
Knockdown of Add3 impairs the myogenic response of renal afferent arterioles and middle cerebral arteries.
Am J Physiol Renal Physiol. 2017 Jun 1;312(6):F971-F981. doi: 10.1152/ajprenal.00529.2016. Epub 2016 Dec 7.
9
Elevated K+ channel activity opposes vasoconstrictor response to serotonin in cerebral arteries of the Fawn Hooded Hypertensive rat.
Physiol Genomics. 2017 Jan 1;49(1):27-36. doi: 10.1152/physiolgenomics.00072.2016. Epub 2016 Oct 27.
10
Endocannabinoids in cerebrovascular regulation.
Am J Physiol Heart Circ Physiol. 2016 Apr 1;310(7):H785-801. doi: 10.1152/ajpheart.00571.2015. Epub 2016 Jan 29.

本文引用的文献

1
Temporal characterization of the development of renal injury in FHH rats and FHH.1BN congenic strains.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F330-8. doi: 10.1152/ajprenal.00261.2010. Epub 2010 Nov 3.
2
Renal vascular dysfunction precedes the development of renal damage in the hypertensive Fawn-Hooded rat.
Am J Physiol Renal Physiol. 2010 Mar;298(3):F625-33. doi: 10.1152/ajprenal.00289.2009. Epub 2009 Dec 9.
3
Overproduction, purification and structure determination of human dual-specificity phosphatase 14.
Acta Crystallogr D Biol Crystallogr. 2009 Oct;65(Pt 10):1013-20. doi: 10.1107/S0907444909023762. Epub 2009 Sep 16.
5
Effect of a new inhibitor of the synthesis of 20-HETE on cerebral ischemia reperfusion injury.
Stroke. 2006 May;37(5):1307-13. doi: 10.1161/01.STR.0000217398.37075.07. Epub 2006 Apr 6.
6
Identification of a QTL on chromosome 1 for impaired autoregulation of RBF in fawn-hooded hypertensive rats.
Am J Physiol Renal Physiol. 2006 May;290(5):F1213-21. doi: 10.1152/ajprenal.00335.2005. Epub 2005 Nov 22.
8
Cellular signalling in arteriolar myogenic constriction: involvement of tyrosine phosphorylation pathways.
Clin Exp Pharmacol Physiol. 2002 Jul;29(7):612-9. doi: 10.1046/j.1440-1681.2002.03698.x.
9
Genetic mapping of blood pressure quantitative trait loci in Milan hypertensive rats.
Hypertension. 2000 Nov;36(5):734-9. doi: 10.1161/01.hyp.36.5.734.
10
The stress-activated protein kinase pathways.
Cell Mol Life Sci. 1999 Aug 15;55(10):1230-54. doi: 10.1007/s000180050369.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验