Suppr超能文献

阐明 NF1 在黑色素瘤发生中的独特作用。

Elucidating distinct roles for NF1 in melanomagenesis.

机构信息

Genetics Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02115, USA.

出版信息

Cancer Discov. 2013 Mar;3(3):338-49. doi: 10.1158/2159-8290.CD-12-0313. Epub 2012 Nov 21.

Abstract

BRAF mutations play a well-established role in melanomagenesis; however, without additional genetic alterations, tumor development is restricted by oncogene-induced senescence (OIS). Here, we show that mutations in the NF1 tumor suppressor gene cooperate with BRAF mutations in melanomagenesis by preventing OIS. In a genetically engineered mouse model, Nf1 mutations suppress Braf-induced senescence, promote melanocyte hyperproliferation, and enhance melanoma development. Nf1 mutations function by deregulating both phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways. As such, Nf1/Braf-mutant tumors are resistant to BRAF inhibitors but are sensitive to combined inhibition of mitogen-activated protein/extracellular signal-regulated kinase kinase and mTOR. Importantly, NF1 is mutated or suppressed in human melanomas that harbor concurrent BRAF mutations, NF1 ablation decreases the sensitivity of melanoma cell lines to BRAF inhibitors, and NF1 is lost in tumors from patients following treatment with these agents. Collectively, these studies provide mechanistic insight into how NF1 cooperates with BRAF mutations in melanoma and show that NF1/neurofibromin inactivation may have an impact on responses to targeted therapies.

摘要

BRAF 突变在黑色素瘤的发生中起着明确的作用;然而,如果没有其他遗传改变,肿瘤的发展将受到癌基因诱导的衰老(OIS)的限制。在这里,我们表明 NF1 肿瘤抑制基因的突变通过防止 OIS 与 BRAF 突变协同作用于黑色素瘤的发生。在基因工程小鼠模型中,Nf1 突变抑制了 Braf 诱导的衰老,促进了黑素细胞的过度增殖,并增强了黑色素瘤的发展。Nf1 突变通过调节磷酸肌醇 3-激酶和细胞外信号调节激酶途径起作用。因此,Nf1/Braf 突变肿瘤对 BRAF 抑制剂有抗性,但对丝裂原活化蛋白/细胞外信号调节激酶激酶和 mTOR 的联合抑制敏感。重要的是,在同时存在 BRAF 突变的人类黑色素瘤中存在 NF1 突变或失活,NF1 缺失会降低黑色素瘤细胞系对 BRAF 抑制剂的敏感性,并且在这些药物治疗后的肿瘤中丢失 NF1。总之,这些研究提供了关于 NF1 如何与黑色素瘤中的 BRAF 突变协同作用的机制见解,并表明 NF1/神经纤维瘤失活可能对靶向治疗的反应产生影响。

相似文献

1
Elucidating distinct roles for NF1 in melanomagenesis.
Cancer Discov. 2013 Mar;3(3):338-49. doi: 10.1158/2159-8290.CD-12-0313. Epub 2012 Nov 21.
3
Overcoming acquired BRAF inhibitor resistance in melanoma via targeted inhibition of Hsp90 with ganetespib.
Mol Cancer Ther. 2014 Feb;13(2):353-63. doi: 10.1158/1535-7163.MCT-13-0481. Epub 2014 Jan 7.
4
p53 Reactivation by PRIMA-1(Met) (APR-246) sensitises (V600E/K)BRAF melanoma to vemurafenib.
Eur J Cancer. 2016 Mar;55:98-110. doi: 10.1016/j.ejca.2015.12.002. Epub 2016 Jan 17.
5
A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition.
Cancer Discov. 2013 Mar;3(3):350-62. doi: 10.1158/2159-8290.CD-12-0470. Epub 2013 Jan 3.
8
Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance.
Nature. 2013 Feb 14;494(7436):251-5. doi: 10.1038/nature11814. Epub 2013 Jan 9.
9
Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence.
Cancer Res. 2014 Apr 15;74(8):2340-50. doi: 10.1158/0008-5472.CAN-13-2625. Epub 2014 Feb 27.
10
Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma.
J Clin Invest. 2014 Mar;124(3):1406-17. doi: 10.1172/JCI70454. Epub 2014 Feb 24.

引用本文的文献

3
Mitochondrial signatures shape phenotype switching and apoptosis in response to PLK1 inhibitors.
Life Sci Alliance. 2024 Dec 10;8(3). doi: 10.26508/lsa.202402912. Print 2025 Mar.
5
Concurrent SOS1 and MEK suppression inhibits signaling and growth of NF1-null melanoma.
Cell Rep Med. 2024 Nov 19;5(11):101818. doi: 10.1016/j.xcrm.2024.101818. Epub 2024 Nov 1.
6
Chemical genetic screens reveal defective lysosomal trafficking as synthetic lethal with NF1 loss.
J Cell Sci. 2024 Aug 1;137(15). doi: 10.1242/jcs.262343. Epub 2024 Aug 14.
7
Defining melanoma combination therapies that provide senolytic sensitivity in human melanoma cells.
Front Cell Dev Biol. 2024 Jun 14;12:1368711. doi: 10.3389/fcell.2024.1368711. eCollection 2024.
8
Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance.
Cancers (Basel). 2024 Apr 19;16(8):1571. doi: 10.3390/cancers16081571.
9
Metabolic Profiling to Assess Response to Targeted and Immune Therapy in Melanoma.
Int J Mol Sci. 2024 Jan 31;25(3):1725. doi: 10.3390/ijms25031725.
10
Senescent cells and macrophages cooperate through a multi-kinase signaling network to promote intestinal transformation in Drosophila.
Dev Cell. 2024 Mar 11;59(5):566-578.e3. doi: 10.1016/j.devcel.2024.01.009. Epub 2024 Feb 2.

本文引用的文献

1
Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma.
Nat Genet. 2012 Sep;44(9):1006-14. doi: 10.1038/ng.2359. Epub 2012 Jul 29.
2
A landscape of driver mutations in melanoma.
Cell. 2012 Jul 20;150(2):251-63. doi: 10.1016/j.cell.2012.06.024.
3
Melanoma genome sequencing reveals frequent PREX2 mutations.
Nature. 2012 May 9;485(7399):502-6. doi: 10.1038/nature11071.
4
Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis.
Genes Dev. 2012 May 15;26(10):1055-69. doi: 10.1101/gad.187252.112. Epub 2012 May 1.
5
7
RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E).
Nature. 2011 Nov 23;480(7377):387-90. doi: 10.1038/nature10662.
8
Targeting the RAS pathway in melanoma.
Trends Mol Med. 2012 Jan;18(1):27-35. doi: 10.1016/j.molmed.2011.08.001. Epub 2011 Sep 30.
9
Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors.
Cancer Cell. 2011 Sep 13;20(3):400-13. doi: 10.1016/j.ccr.2011.08.014.
10
PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression.
Cancer Res. 2011 Apr 1;71(7):2750-60. doi: 10.1158/0008-5472.CAN-10-2954. Epub 2011 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验