Suppr超能文献

运动神经元内的本体感受耦合驱动秀丽隐杆线虫向前运动。

Proprioceptive coupling within motor neurons drives C. elegans forward locomotion.

机构信息

Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.

出版信息

Neuron. 2012 Nov 21;76(4):750-61. doi: 10.1016/j.neuron.2012.08.039.

Abstract

Locomotion requires coordinated motor activity throughout an animal's body. In both vertebrates and invertebrates, chains of coupled central pattern generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic undulatory waves from head to tail during forward movement. Proprioceptive coupling between adjacent body regions transduces rhythmic movement initiated near the head into bending waves driven along the body by a chain of reflexes. Using optogenetics and calcium imaging to manipulate and monitor motor circuit activity of moving C. elegans held in microfluidic devices, we found that the B-type cholinergic motor neurons transduce the proprioceptive signal. In C. elegans, a sensorimotor feedback loop operating within a specific type of motor neuron both drives and organizes body movement.

摘要

运动需要动物全身协调的运动活动。在脊椎动物和无脊椎动物中,通常会引出一连串的耦合中枢模式发生器 (CPG) 来解释局部有节奏的行为。在秀丽隐杆线虫中,我们报告说,运动回路中的本体感受负责在向前运动过程中从头部传播和协调到尾部的有节奏的波动。相邻身体区域之间的本体感受耦合将头部附近发起的有节奏运动转换为沿身体驱动的弯曲波,该弯曲波由一连串反射驱动。我们使用光遗传学和钙成像来操纵和监测在微流控设备中移动的秀丽隐杆线虫的运动回路活动,发现 B 型胆碱能运动神经元转换了本体感受信号。在秀丽隐杆线虫中,在特定类型的运动神经元内运行的感觉运动反馈回路既能驱动又能组织身体运动。

相似文献

1
Proprioceptive coupling within motor neurons drives C. elegans forward locomotion.
Neuron. 2012 Nov 21;76(4):750-61. doi: 10.1016/j.neuron.2012.08.039.
3
Descending pathway facilitates undulatory wave propagation in through gap junctions.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4493-E4502. doi: 10.1073/pnas.1717022115. Epub 2018 Apr 23.
4
Distributed rhythm generators underlie forward locomotion.
Elife. 2018 Jan 23;7:e29913. doi: 10.7554/eLife.29913.
5
Functionally asymmetric motor neurons contribute to coordinating locomotion of .
Elife. 2018 Sep 11;7:e34997. doi: 10.7554/eLife.34997.
6
Gap Junction-Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval .
J Neurosci. 2017 Feb 22;37(8):2045-2060. doi: 10.1523/JNEUROSCI.1453-16.2017. Epub 2017 Jan 23.
9
A Gustatory Neural Circuit of Generates Memory-Dependent Behaviors in Na Chemotaxis.
J Neurosci. 2017 Feb 22;37(8):2097-2111. doi: 10.1523/JNEUROSCI.1774-16.2017. Epub 2017 Jan 26.
10
Complex Locomotion Behavior Changes Are Induced in Caenorhabditis elegans by the Lack of the Regulatory Leak K+ Channel TWK-7.
Genetics. 2016 Oct;204(2):683-701. doi: 10.1534/genetics.116.188896. Epub 2016 Aug 17.

引用本文的文献

1
: A Software Suite for Quantifying Properties of Locomotion, Bending, Sleep, and Action Potentials.
eNeuro. 2025 Aug 27;12(8). doi: 10.1523/ENEURO.0224-25.2025. Print 2025 Aug.
2
The insulin-like peptide INS-27 mediates a muscle-to-neuron feedback signal coupling muscle activity with AMPA receptor trafficking.
PLoS Genet. 2025 Jul 18;21(7):e1011786. doi: 10.1371/journal.pgen.1011786. eCollection 2025 Jul.
3
The roles of feedback loops in the Caenorhabditis elegans rhythmic forward locomotion.
PLoS Comput Biol. 2025 Jun 25;21(6):e1013171. doi: 10.1371/journal.pcbi.1013171. eCollection 2025 Jun.
4
Symmetries and synchronization from whole-neural activity in the connectome: Integration of functional and structural networks.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2417850122. doi: 10.1073/pnas.2417850122. Epub 2025 Jun 2.
5
Biophysical modeling and experimental analysis of the dynamics of C. elegans body-wall muscle cells.
PLoS Comput Biol. 2025 Jan 27;21(1):e1012318. doi: 10.1371/journal.pcbi.1012318. eCollection 2025 Jan.
6
Comprehensive analysis of the C. elegans connectome reveals novel circuits and functions of previously unstudied neurons.
PLoS Biol. 2024 Dec 17;22(12):e3002939. doi: 10.1371/journal.pbio.3002939. eCollection 2024 Dec.
7
An integrative data-driven model simulating C. elegans brain, body and environment interactions.
Nat Comput Sci. 2024 Dec;4(12):978-990. doi: 10.1038/s43588-024-00738-w. Epub 2024 Dec 16.
8
Hierarchical behavior control by a single class of interneurons.
Proc Natl Acad Sci U S A. 2024 Nov 19;121(47):e2410789121. doi: 10.1073/pnas.2410789121. Epub 2024 Nov 12.
10
: A Software Suite for Quantifying Properties of Locomotion, Bending, Sleep, and Action Potentials.
bioRxiv. 2024 Sep 15:2024.09.12.612524. doi: 10.1101/2024.09.12.612524.

本文引用的文献

1
The structure of the nervous system of the nematode Caenorhabditis elegans.
Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340. doi: 10.1098/rstb.1986.0056.
5
Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans.
Nat Methods. 2011 Feb;8(2):147-52. doi: 10.1038/nmeth.1554. Epub 2011 Jan 16.
6
Neuronal control of swimming behavior: comparison of vertebrate and invertebrate model systems.
Prog Neurobiol. 2011 Feb;93(2):244-69. doi: 10.1016/j.pneurobio.2010.11.001. Epub 2010 Nov 18.
7
Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20323-8. doi: 10.1073/pnas.1003016107. Epub 2010 Nov 3.
8
Development and functional organization of spinal locomotor circuits.
Curr Opin Neurobiol. 2011 Feb;21(1):100-9. doi: 10.1016/j.conb.2010.09.004.
9
The role of the TRP channel NompC in Drosophila larval and adult locomotion.
Neuron. 2010 Aug 12;67(3):373-80. doi: 10.1016/j.neuron.2010.07.004.
10
Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators.
Nat Methods. 2009 Dec;6(12):875-81. doi: 10.1038/nmeth.1398. Epub 2009 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验