Suppr超能文献

CCR2 趋化因子受体信号转导介导实验性骨关节炎疼痛。

CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis.

机构信息

Department of Internal Medicine, Section of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20602-7. doi: 10.1073/pnas.1209294110. Epub 2012 Nov 26.

Abstract

Osteoarthritis is one of the leading causes of chronic pain, but almost nothing is known about the mechanisms and molecules that mediate osteoarthritis-associated joint pain. Consequently, treatment options remain inadequate and joint replacement is often inevitable. Here, we use a surgical mouse model that captures the long-term progression of knee osteoarthritis to longitudinally assess pain-related behaviors and concomitant changes in the innervating dorsal root ganglia (DRG). We demonstrate that monocyte chemoattractant protein (MCP)-1 (CCL2) and its high-affinity receptor, chemokine (C-C motif) receptor 2 (CCR2), are central to the development of pain associated with knee osteoarthritis. After destabilization of the medial meniscus, mice developed early-onset secondary mechanical allodynia that was maintained for 16 wk. MCP-1 and CCR2 mRNA, protein, and signaling activity were temporarily up-regulated in the innervating DRG at 8 wk after surgery. This result correlated with the presentation of movement-provoked pain behaviors, which were maintained up to 16 wk. Mice that lack Ccr2 also developed mechanical allodynia, but this started to resolve from 8 wk onwards. Despite severe allodynia and structural knee joint damage equal to wild-type mice, Ccr2-null mice did not develop movement-provoked pain behaviors at 8 wk. In wild-type mice, macrophages infiltrated the DRG by 8 wk and this was maintained through 16 wk after surgery. In contrast, macrophage infiltration was not observed in Ccr2-null mice. These observations suggest a key role for the MCP-1/CCR2 pathway in establishing osteoarthritis pain.

摘要

骨关节炎是慢性疼痛的主要原因之一,但人们对介导骨关节炎相关关节疼痛的机制和分子几乎一无所知。因此,治疗选择仍然不足,关节置换往往是不可避免的。在这里,我们使用一种手术小鼠模型来捕获膝关节骨关节炎的长期进展,以纵向评估与疼痛相关的行为以及支配背根神经节(DRG)的伴随变化。我们证明单核细胞趋化蛋白 1(MCP-1)(CCL2)及其高亲和力受体趋化因子(C-C 基序)受体 2(CCR2)是与膝关节骨关节炎相关疼痛发展的核心。内侧半月板不稳定后,小鼠出现早期发作的继发性机械性痛觉过敏,持续 16 周。手术后 8 周,支配 DRG 的 MCP-1 和 CCR2 mRNA、蛋白和信号转导活性暂时上调。这一结果与运动诱发的疼痛行为的出现相关,这些行为持续到 16 周。缺乏 Ccr2 的小鼠也出现机械性痛觉过敏,但从 8 周开始缓解。尽管 Ccr2 缺失小鼠的机械性痛觉过敏和膝关节结构损伤与野生型小鼠相当,但在 8 周时它们没有出现运动诱发的疼痛行为。在野生型小鼠中,8 周时巨噬细胞浸润 DRG,并持续到手术后 16 周。相比之下,在 Ccr2 缺失小鼠中没有观察到巨噬细胞浸润。这些观察结果表明,MCP-1/CCR2 途径在建立骨关节炎疼痛方面发挥着关键作用。

相似文献

1
CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20602-7. doi: 10.1073/pnas.1209294110. Epub 2012 Nov 26.
4
TRPV1 and the MCP-1/CCR2 Axis Modulate Post-UTI Chronic Pain.
Sci Rep. 2018 May 8;8(1):7188. doi: 10.1038/s41598-018-24056-0.
5
CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis.
Ann Rheum Dis. 2017 May;76(5):914-922. doi: 10.1136/annrheumdis-2016-210426. Epub 2016 Dec 13.
6
CCL2/CCR2 signaling elicits itch- and pain-like behavior in a murine model of allergic contact dermatitis.
Brain Behav Immun. 2019 Aug;80:464-473. doi: 10.1016/j.bbi.2019.04.026. Epub 2019 Apr 11.
8
Microarray analyses of the dorsal root ganglia support a role for innate neuro-immune pathways in persistent pain in experimental osteoarthritis.
Osteoarthritis Cartilage. 2020 May;28(5):581-592. doi: 10.1016/j.joca.2020.01.008. Epub 2020 Jan 23.
9
Monocyte chemoattractant protein-1 functions as a neuromodulator in dorsal root ganglia neurons.
J Neurochem. 2008 Jan;104(1):254-63. doi: 10.1111/j.1471-4159.2007.04969.x. Epub 2007 Oct 18.
10
Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain.
J Neurosci. 2007 Nov 7;27(45):12396-406. doi: 10.1523/JNEUROSCI.3016-07.2007.

引用本文的文献

1
Peripheral neuronal sensitization and neurovascular remodelling in osteoarthritis pain.
Nat Rev Rheumatol. 2025 Aug 12. doi: 10.1038/s41584-025-01280-3.
3
Association of organs-crosstalk with the pathogenesis of osteoarthritis: cartilage as a key player.
Front Endocrinol (Lausanne). 2025 Jun 5;16:1593658. doi: 10.3389/fendo.2025.1593658. eCollection 2025.
4
Pain in fibrous dysplasia: identifying nociceptive mechanisms in a preclinical model.
J Bone Miner Res. 2025 Jun 25;40(7):891-903. doi: 10.1093/jbmr/zjaf039.
5
New paradigms in pain management after skeletal trauma: Orthopaedic Trauma Association's 2023 Basic Science Focus Forum Symposium.
OTA Int. 2025 Apr 1;8(2 Suppl):e352. doi: 10.1097/OI9.0000000000000352. eCollection 2025 Apr.
9
Specialized pro-resolving mediator Maresin 1 attenuates pain in a mouse model of osteoarthritis.
Osteoarthritis Cartilage. 2025 Mar;33(3):341-350. doi: 10.1016/j.joca.2024.10.018. Epub 2024 Nov 29.
10
Antioxidant hydrogels for the treatment of osteoarthritis: mechanisms and recent advances.
Front Pharmacol. 2024 Oct 25;15:1488036. doi: 10.3389/fphar.2024.1488036. eCollection 2024.

本文引用的文献

1
Quantitative sensory testing in painful osteoarthritis: a systematic review and meta-analysis.
Osteoarthritis Cartilage. 2012 Oct;20(10):1075-85. doi: 10.1016/j.joca.2012.06.009. Epub 2012 Jul 13.
2
Brain morphological signatures for chronic pain.
PLoS One. 2011;6(10):e26010. doi: 10.1371/journal.pone.0026010. Epub 2011 Oct 13.
3
Pain mechanisms in osteoarthritis: understanding the role of central pain and current approaches to its treatment.
J Rheumatol. 2011 Aug;38(8):1546-51. doi: 10.3899/jrheum.100759. Epub 2011 Jun 1.
5
Neuropathic pain symptoms in a community knee OA cohort.
Osteoarthritis Cartilage. 2011 Jun;19(6):647-54. doi: 10.1016/j.joca.2011.03.007. Epub 2011 Apr 8.
6
Central sensitization: implications for the diagnosis and treatment of pain.
Pain. 2011 Mar;152(3 Suppl):S2-S15. doi: 10.1016/j.pain.2010.09.030. Epub 2010 Oct 18.
7
Interactions between the immune and nervous systems in pain.
Nat Med. 2010 Nov;16(11):1267-76. doi: 10.1038/nm.2234. Epub 2010 Oct 14.
8
The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the mouse.
Osteoarthritis Cartilage. 2010 Oct;18 Suppl 3:S17-23. doi: 10.1016/j.joca.2010.05.025.
9
Insights into the regulation of chemokine receptors by molecular signaling pathways: functional roles in neuropathic pain.
Brain Behav Immun. 2010 Aug;24(6):859-65. doi: 10.1016/j.bbi.2010.03.007. Epub 2010 Mar 27.
10
ADAMTS-5 deficient mice do not develop mechanical allodynia associated with osteoarthritis following medial meniscal destabilization.
Osteoarthritis Cartilage. 2010 Apr;18(4):572-80. doi: 10.1016/j.joca.2009.11.013. Epub 2009 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验