Suppr超能文献

PROSPER:一种基于综合特征的蛋白酶底物切割位点预测工具。

PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

机构信息

Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.

出版信息

PLoS One. 2012;7(11):e50300. doi: 10.1371/journal.pone.0050300. Epub 2012 Nov 29.

Abstract

The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s). Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database) with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate sequence using machine learning techniques. It is freely available at http://lightning.med.monash.edu.au/PROSPER/.

摘要

蛋白质合成后的催化裂解能力是所有生命形式的基础。因此,位点特异性蛋白水解是最重要的翻译后修饰之一。了解蛋白酶的生理作用的关键是确定其天然底物。蛋白酶底物特异性的知识可以极大地提高我们预测其靶蛋白底物的能力,但为了有效地通过计算机方法识别蛋白质底物,必须以有效的方式利用这些信息。为了解决这个问题,我们提出了 PROSPER,这是一个集成的基于特征的服务器,用于 24 种不同蛋白酶的蛋白质底物及其裂解位点的计算机识别。PROSPER 利用这些蛋白酶的既定特异性信息(来自 MEROPS 数据库),并采用机器学习方法,使用不同但互补的序列和结构特征来预测蛋白酶的裂解位点。PROSPER 使用的特征包括局部氨基酸序列特征、预测的二级结构、溶剂可及性和预测的天然无序性。因此,对于具有已知氨基酸特异性的蛋白酶,PROSPER 为识别酶的蛋白质底物提供了一个方便的、预先准备好的工具。对迄今为止包含在数据库中的 24 种蛋白酶的系统预测分析表明,我们在工具中包含的特征在切割位点预测方面大大提高了性能,这体现在它们对提高识别这些酶底物中已知切割位点的性能的贡献上。与两个最先进的预测工具 PoPS 和 SitePrediction 相比,PROSPER 具有更高的准确性和覆盖率。据我们所知,PROSPER 是第一个能够使用机器学习技术在单个底物序列中预测多种蛋白酶的切割位点的综合服务器。它可在 http://lightning.med.monash.edu.au/PROSPER/ 免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ffa/3510211/949772180a03/pone.0050300.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验