Dept. of Neurosurgery, Yale Univ. School of Medicine, 333 Cedar St., New Haven, CT 06520, USA.
J Neurophysiol. 2013 Mar;109(6):1571-8. doi: 10.1152/jn.00522.2012. Epub 2012 Dec 19.
In mature neurons, GABA is the primary inhibitory neurotransmitter. In contrast, in developing neurons, GABA exerts excitatory actions, and in some neurons GABA-mediated excitatory synaptic activity is more prevalent than glutamate-mediated excitation. Hypothalamic neuropeptides that modulate cognitive arousal and energy homeostasis, hypocretin/orexin and neuropeptide Y (NPY), evoked reversed effects on synaptic actions that were dependent on presynaptic GABA release onto melanin-concentrating hormone (MCH) neurons. MCH neurons were identified by selective green fluorescent protein (GFP) expression in transgenic mice. In adults, hypocretin increased GABA release leading to reduced excitation. In contrast, in the developing brain as studied here with analysis of miniature excitatory postsynaptic currents, paired-pulse ratios, and evoked potentials, hypocretin acted presynaptically to enhance the excitatory actions of GABA. The ability of hypocretin to enhance GABA release increases inhibition in adult neurons but paradoxically enhances excitation in developing MCH neurons. In contrast, NPY attenuation of GABA release reduced inhibition in mature neurons but enhanced inhibition during development by attenuating GABA excitation. Both hypocretin and NPY also evoked direct actions on developing MCH neurons. Hypocretin excited MCH cells by activating a sodium-calcium exchanger and by reducing potassium currents; NPY reduced activity by increasing an inwardly rectifying potassium current. These data for the first time show that both hypocretin and NPY receptors are functional presynaptically during early postnatal hypothalamic development and that both neuropeptides modulate GABA actions during development with a valence of enhanced excitation or inhibition opposite to that of the adult state, potentially allowing neuropeptide modulation of use-dependent synapse stabilization.
在成熟的神经元中,GABA 是主要的抑制性神经递质。相比之下,在发育中的神经元中,GABA 发挥兴奋作用,并且在一些神经元中,GABA 介导的兴奋性突触活动比谷氨酸介导的兴奋更为普遍。调节认知觉醒和能量平衡的下丘脑神经肽,食欲素/下丘脑泌素和神经肽 Y(NPY),对突触活动产生了相反的调节作用,这种作用依赖于 GABA 在前突触释放到黑色素浓缩激素(MCH)神经元上。MCH 神经元通过转基因小鼠中选择性绿色荧光蛋白(GFP)的表达来鉴定。在成年动物中,食欲素增加 GABA 释放,导致兴奋减少。相比之下,在本研究中,通过分析微小兴奋性突触后电流、成对脉冲比和诱发电位,在发育中的大脑中,食欲素在突触前作用增强 GABA 的兴奋作用。食欲素增强 GABA 释放的能力增加了成年神经元的抑制作用,但在发育中的 MCH 神经元中却增强了兴奋作用。相比之下,NPY 减弱 GABA 释放会减少成熟神经元的抑制作用,但通过减弱 GABA 兴奋来增强发育过程中的抑制作用。食欲素和 NPY 也对发育中的 MCH 神经元产生直接作用。食欲素通过激活钠钙交换器和减少钾电流来兴奋 MCH 细胞;NPY 通过增加内向整流钾电流来降低细胞活性。这些数据首次表明,在早期下丘脑发育过程中,食欲素和 NPY 受体都是功能性的突触前受体,并且两种神经肽都在发育过程中调节 GABA 作用,其兴奋或抑制的效价与成年状态相反,可能允许神经肽调节依赖于使用的突触稳定。