School of Biological Sciences, Cell Biology, Physiology and Development Section, Illinois State University, Normal, Illinois 61790, USA.
J Neurosci. 2013 Jan 9;33(2):452-63. doi: 10.1523/JNEUROSCI.2136-12.2013.
Drugs of abuse hijack brain-reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting nonexocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties, which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to 2 h. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration, and frequency of spontaneous dopamine transients, the naturally occurring, nonelectrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sugar reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sugar-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify upregulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling.
滥用药物在成瘾过程中通过增强与学习和目标导向行为相关的动作电位依赖性相位多巴胺释放事件来劫持大脑奖励回路。一个突出的例外似乎是安非他命(AMPH)和相关类似物,它们被提议通过耗尽囊泡储存并通过反向转运促进非胞吐性多巴胺外排来破坏正常的多巴胺神经传递模式。然而,这种 AMPH 作用机制与其治疗效果和成瘾特性不一致,人们认为这些特性依赖于相位多巴胺信号。在这里,我们使用自由移动大鼠中的快速扫描循环伏安法来探究 AMPH 在纹状体中的主要神经化学反应,并将这些变化与行为联系起来。首先,我们表明 AMPH 剂量依赖性地增强了对类似相位的电流脉冲串的诱发多巴胺反应,最长可达 2 小时。对数据进行建模表明,AMPH 抑制了多巴胺摄取,但出乎意料地增强了囊泡多巴胺的释放。其次,我们发现 AMPH 增加了自发多巴胺瞬变的幅度、持续时间和频率,即自然发生的、非电诱发的、细胞外多巴胺的相位增加。最后,使用操作性糖奖励范式,我们表明低剂量 AMPH 增强了由糖预测线索引起的多巴胺瞬变。然而,高剂量 AMPH 导致操作性行为失败,这是由于相位多巴胺过度活跃以及多巴胺瞬变与奖励预测线索的解耦。这些发现确定了外排性多巴胺释放的上调是行为动物中 AMPH 作用的关键,并支持了滥用药物激活相位多巴胺信号的统一机制。