Suppr超能文献

美托洛尔和拉贝洛尔在大鼠、小鼠和 Caco-2 细胞中的渗透性比较:作为 BCS 分类的参考标准。

Comparison of the permeability of metoprolol and labetalol in rat, mouse, and Caco-2 cells: use as a reference standard for BCS classification.

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109-1065, USA.

出版信息

Mol Pharm. 2013 Mar 4;10(3):958-66. doi: 10.1021/mp300410n. Epub 2013 Feb 4.

Abstract

The purpose of this study was to investigate labetalol as a potential high permeability reference standard for the application of Biopharmaceutics Classification Systems (BCS). Permeabilities of labetalol and metoprolol were investigated in animal intestinal perfusion models and Caco-2 cell monolayers. After isolating specific intestinal segments, in situ single-pass intestinal perfusions (SPIP) were performed in rats and mice. The effective permeabilities (Peff) of labetalol and metoprolol, an FDA standard for the low/high Peff class boundary, were investigated in two different segments of rat intestine (proximal jejunum and distal ileum) and in the proximal jejunum of mouse. No significant difference was found between Peff of metoprolol and labetalol in the jejunum and ileum of rat (0.33 ± 0.11 × 10(-4) vs 0.38 ± 0.06 × 10(-4) and 0.57 ± 0.17 × 10(-4) vs 0.64 ± 0.30 × 10(-4) cm/s, respectively) and in the jejunum of mouse (0.55 ± 0.05 × 10(-4) vs 0.59 ± 0.13 × 10(-4) cm/s). However, Peff of metoprolol and labetalol were 1.7 and 1.6 times higher in the jejunum of mouse, compared to the jejunum of rat, respectively. Metoprolol and labetalol showed segmental-dependent permeability through the rat intestine, with increased Peff in the distal ileum in comparison to the proximal jejunum. Most significantly, Peff of labetalol was found to be concentration-dependent. Decreasing concentrations of labetalol in the perfusate resulted in decreased Peff compared to Peff of metoprolol. The intestinal epithelial permeability of labetalol was lower than that of metoprolol in Caco-2 cells at both apical pH 6.5 and 7.5 (5.96 ± 1.96 × 10(-6) vs 9.44 ± 3.44 × 10(-6) and 15.9 ± 2.2 × 10(-6) vs 23.2 ± 7.1 × 10(-6) cm/s, respectively). Labetalol exhibited higher permeability in basolateral to apical (BL-AP) compared to AP-BL direction in Caco-2 cells at 0.1 times the highest dose strength (HDS) (46.7 ± 6.5 × 10(-6) vs 14.2 ± 1.5 × 10(-6) cm/s). The P-gp inhibitor, verapamil, significantly increased AP-BL and decreased BL-AP direction transport of labetalol. Overall, labetalol showed high Peff in rat and mouse intestinal perfusion models similar to metoprolol at a concentration based on HDS. However, the concentration-dependent permeability of labetalol in mice due to P-gp and the inhibition study with verapamil in Caco-2 cells indicated that labetalol is not an ideal reference standard for BCS classification.

摘要

本研究旨在探讨拉贝洛尔作为生物药剂学分类系统(BCS)应用的潜在高通透性参考标准。在动物肠灌注模型和 Caco-2 细胞单层中研究了拉贝洛尔和美托洛尔的通透性。在分离特定肠段后,在大鼠和小鼠中进行了原位单次肠灌注(SPIP)。研究了 FDA 低/高 Peff 类边界标准的美托洛尔和拉贝洛尔在大鼠的两个不同肠段(空肠近端和回肠远端)和小鼠的空肠近端中的有效渗透率(Peff)。在大鼠的空肠和回肠中,美托洛尔和拉贝洛尔的 Peff 没有显著差异(0.33±0.11×10(-4)对 0.38±0.06×10(-4)和 0.57±0.17×10(-4)对 0.64±0.30×10(-4)cm/s,分别)和在小鼠的空肠中(0.55±0.05×10(-4)对 0.59±0.13×10(-4)cm/s)。然而,与大鼠空肠相比,美托洛尔和拉贝洛尔在小鼠空肠中的 Peff 分别高 1.7 倍和 1.6 倍。美托洛尔和拉贝洛尔在大鼠肠道中显示出分段依赖性通透性,与空肠近端相比,回肠远端的 Peff 增加。最重要的是,拉贝洛尔的 Peff 呈浓度依赖性。与美托洛尔相比,灌流液中拉贝洛尔浓度降低导致 Peff 降低。在 Caco-2 细胞中,拉贝洛尔的肠上皮通透性低于美托洛尔,在顶侧 pH 值为 6.5 和 7.5 时分别为 5.96±1.96×10(-6)对 9.44±3.44×10(-6)和 15.9±2.2×10(-6)对 23.2±7.1×10(-6)cm/s)。与顶侧至基底外侧(BL-AP)相比,拉贝洛尔在 Caco-2 细胞中以最高剂量强度(HDS)的 0.1 倍时表现出更高的 BL-AP 通透性(46.7±6.5×10(-6)对 14.2±1.5×10(-6)cm/s)。P-糖蛋白抑制剂维拉帕米显著增加了拉贝洛尔的 AP-BL 和减少了 BL-AP 方向的转运。总体而言,拉贝洛尔在大鼠和小鼠肠灌注模型中的 Peff 与美托洛尔相似,基于 HDS 的浓度较高。然而,由于 P-糖蛋白,拉贝洛尔在小鼠中的浓度依赖性通透性以及维拉帕米在 Caco-2 细胞中的抑制研究表明,拉贝洛尔不是 BCS 分类的理想参考标准。

相似文献

3
Biopharmaceutics classification and intestinal absorption of chikusetsusaponin IVa.
Biopharm Drug Dispos. 2019 Sep;40(8):276-281. doi: 10.1002/bdd.2200. Epub 2019 Jul 28.
4
The low/high BCS permeability class boundary: physicochemical comparison of metoprolol and labetalol.
Mol Pharm. 2014 May 5;11(5):1707-14. doi: 10.1021/mp500152y. Epub 2014 Apr 15.
8
Regional Intestinal Permeability in Rats: A Comparison of Methods.
Mol Pharm. 2017 Dec 4;14(12):4252-4261. doi: 10.1021/acs.molpharmaceut.7b00279. Epub 2017 Oct 5.

引用本文的文献

2
Challenges in Permeability Assessment for Oral Drug Product Development.
Pharmaceutics. 2023 Sep 28;15(10):2397. doi: 10.3390/pharmaceutics15102397.
4
Exploring a Bioequivalence Failure for Silodosin Products Due to Disintegrant Excipients.
Pharmaceutics. 2022 Nov 23;14(12):2565. doi: 10.3390/pharmaceutics14122565.
5
Preclinical Characterization and Development on NAQ as a Mu Opioid Receptor Partial Agonist for Opioid Use Disorder Treatment.
ACS Pharmacol Transl Sci. 2022 Nov 2;5(11):1197-1209. doi: 10.1021/acsptsci.2c00178. eCollection 2022 Nov 11.
6
Fighting Plasmodium chloroquine resistance with acetylenic chloroquine analogues.
Int J Parasitol Drugs Drug Resist. 2022 Dec;20:121-128. doi: 10.1016/j.ijpddr.2022.10.003. Epub 2022 Oct 31.

本文引用的文献

1
Single-pass intestinal perfusion to establish the intestinal permeability of model drugs in mouse.
Int J Pharm. 2012 Oct 15;436(1-2):472-7. doi: 10.1016/j.ijpharm.2012.07.010. Epub 2012 Jul 17.
4
Drug-permeability and transporter assays in Caco-2 and MDCK cell lines.
Future Med Chem. 2011 Dec;3(16):2063-77. doi: 10.4155/fmc.11.149.
5
The BCS, BDDCS, and regulatory guidances.
Pharm Res. 2011 Jul;28(7):1774-8. doi: 10.1007/s11095-011-0438-1. Epub 2011 Apr 14.
6
High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations.
Mol Pharm. 2010 Oct 4;7(5):1827-34. doi: 10.1021/mp100175a. Epub 2010 Sep 3.
10
Fast log P determination by ultra-high-pressure liquid chromatography coupled with UV and mass spectrometry detections.
Anal Bioanal Chem. 2009 Aug;394(7):1919-30. doi: 10.1007/s00216-009-2862-1. Epub 2009 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验