Suppr超能文献

与发育和环境线索相关的全基因组染色质状态转变。

Genome-wide chromatin state transitions associated with developmental and environmental cues.

机构信息

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

出版信息

Cell. 2013 Jan 31;152(3):642-54. doi: 10.1016/j.cell.2012.12.033. Epub 2013 Jan 17.

Abstract

Differences in chromatin organization are key to the multiplicity of cell states that arise from a single genetic background, yet the landscapes of in vivo tissues remain largely uncharted. Here, we mapped chromatin genome-wide in a large and diverse collection of human tissues and stem cells. The maps yield unprecedented annotations of functional genomic elements and their regulation across developmental stages, lineages, and cellular environments. They also reveal global features of the epigenome, related to nuclear architecture, that also vary across cellular phenotypes. Specifically, developmental specification is accompanied by progressive chromatin restriction as the default state transitions from dynamic remodeling to generalized compaction. Exposure to serum in vitro triggers a distinct transition that involves de novo establishment of domains with features of constitutive heterochromatin. We describe how these global chromatin state transitions relate to chromosome and nuclear architecture, and discuss their implications for lineage fidelity, cellular senescence, and reprogramming.

摘要

染色质构象的差异是细胞在单一遗传背景下产生多种状态的关键,但体内组织的图谱在很大程度上仍未被描绘。在这里,我们对大量多样化的人类组织和干细胞进行了全基因组范围的染色质作图。这些图谱提供了前所未有的功能基因组元件及其在发育阶段、谱系和细胞环境中的调控的注释。它们还揭示了与核架构相关的表观基因组的全局特征,这些特征也随细胞表型的变化而变化。具体而言,随着默认状态从动态重塑转变为普遍紧缩,发育特化伴随着染色质的逐渐限制。体外接触血清会引发一个独特的转变,涉及到具有组成型异染色质特征的新域的建立。我们描述了这些全局染色质状态转变如何与染色体和核架构相关,并讨论了它们对谱系保真度、细胞衰老和重编程的影响。

相似文献

1
Genome-wide chromatin state transitions associated with developmental and environmental cues.
Cell. 2013 Jan 31;152(3):642-54. doi: 10.1016/j.cell.2012.12.033. Epub 2013 Jan 17.
2
Chromatin architecture reorganization during stem cell differentiation.
Nature. 2015 Feb 19;518(7539):331-6. doi: 10.1038/nature14222.
4
Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.
Circ Res. 2017 Nov 10;121(11):1237-1250. doi: 10.1161/CIRCRESAHA.117.311367. Epub 2017 Oct 13.
5
Regulation of Reprogramming and Cellular Plasticity through Histone Exchange and Histone Variant Incorporation.
Cold Spring Harb Symp Quant Biol. 2015;80:165-75. doi: 10.1101/sqb.2015.80.027458. Epub 2015 Nov 18.
6
DNA and chromatin modification networks distinguish stem cell pluripotent ground states.
Mol Cell Proteomics. 2012 Oct;11(10):1036-47. doi: 10.1074/mcp.M111.011114. Epub 2012 Jul 22.
7
The interplay of epigenetic marks during stem cell differentiation and development.
Nat Rev Genet. 2017 Nov;18(11):643-658. doi: 10.1038/nrg.2017.57. Epub 2017 Aug 14.
8
Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells.
Cell Stem Cell. 2010 Aug 6;7(2):249-57. doi: 10.1016/j.stem.2010.06.015.
9
Cellular reprogramming: a small molecule perspective.
Curr Opin Cell Biol. 2012 Dec;24(6):784-92. doi: 10.1016/j.ceb.2012.08.010. Epub 2012 Sep 7.

引用本文的文献

1
PADI4-mediated citrullination of histone H3 stimulates HIV-1 transcription.
Nat Commun. 2025 Jun 25;16(1):5393. doi: 10.1038/s41467-025-61029-0.
2
ARID4B: An Orchestrator from Stem Cell Fate to Carcinogenesis.
Cells. 2025 Jun 10;14(12):872. doi: 10.3390/cells14120872.
3
Identification of chromatin-associated RNAs at human centromeres.
bioRxiv. 2025 Jun 8:2025.06.05.658139. doi: 10.1101/2025.06.05.658139.
4
Cell reprogramming: methods, mechanisms and applications.
Cell Regen. 2025 Mar 27;14(1):12. doi: 10.1186/s13619-025-00229-x.
6
Retinoic acid drives surface epithelium fate determination through the TCF7-MSX2 axis.
Cell Mol Life Sci. 2024 Dec 27;82(1):16. doi: 10.1007/s00018-024-05525-4.
7
Optimized and Robust Workflow for Quantifying the Canonical Histone Ubiquitination Marks H2AK119ub and H2BK120ub by LC-MS/MS.
J Proteome Res. 2024 Dec 6;23(12):5405-5420. doi: 10.1021/acs.jproteome.4c00519. Epub 2024 Nov 18.
8
Development and evolution of Drosophila chromatin landscape in a 3D genome context.
Nat Commun. 2024 Nov 1;15(1):9452. doi: 10.1038/s41467-024-53892-0.
10
Environmental conditions elicit a slow but enduring response of histone post-translational modifications in Mozambique tilapia.
Environ Epigenet. 2024 Sep 2;10(1):dvae013. doi: 10.1093/eep/dvae013. eCollection 2024.

本文引用的文献

1
Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome.
Cell. 2012 Nov 21;151(5):994-1004. doi: 10.1016/j.cell.2012.09.045. Epub 2012 Nov 15.
2
Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16196-201. doi: 10.1073/pnas.1202352109. Epub 2012 Sep 18.
3
An integrated encyclopedia of DNA elements in the human genome.
Nature. 2012 Sep 6;489(7414):57-74. doi: 10.1038/nature11247.
4
Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation.
Mol Cell. 2012 Jul 27;47(2):203-14. doi: 10.1016/j.molcel.2012.06.010. Epub 2012 Jul 12.
5
A map of the cis-regulatory sequences in the mouse genome.
Nature. 2012 Aug 2;488(7409):116-20. doi: 10.1038/nature11243.
6
Chromatin-modifying enzymes as modulators of reprogramming.
Nature. 2012 Mar 4;483(7391):598-602. doi: 10.1038/nature10953.
7
Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition.
Nat Struct Mol Biol. 2011 Jul 3;18(8):867-74. doi: 10.1038/nsmb.2084.
9
An epigenetic signature for monoallelic olfactory receptor expression.
Cell. 2011 May 13;145(4):555-70. doi: 10.1016/j.cell.2011.03.040. Epub 2011 Apr 28.
10
Mapping and analysis of chromatin state dynamics in nine human cell types.
Nature. 2011 May 5;473(7345):43-9. doi: 10.1038/nature09906. Epub 2011 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验