Suppr超能文献

线性混合效应模型方法在 fMRI 组分析中的应用。

Linear mixed-effects modeling approach to FMRI group analysis.

机构信息

Scientific and Statistical Computing Core, NIMH/NIH/HHS, USA.

出版信息

Neuroimage. 2013 Jun;73:176-90. doi: 10.1016/j.neuroimage.2013.01.047. Epub 2013 Jan 30.

Abstract

Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity for activation detection. The importance of hypothesis formulation is also illustrated in the simulations. Comparisons with alternative group analysis approaches and the limitations of LME are discussed in details.

摘要

常规组分析通常使用学生 t 检验、回归或标准的 AN(C)OVA 进行,其中假设方差-协方差矩阵具有简单的结构。当协方差结构的假设被违反时,会采用一些修正方法。然而,由于实验设计具有不同的复杂程度,这些传统方法可能会变得繁琐,甚至无法处理当前的情况。例如,大多数当前的 fMRI 软件包在组水平分析以下情况时遇到困难:(1)当有多个运行或会话的效应估计时,考虑到个体内变异性;(2)在存在个体内(重复测量)因素、多个被试分组(被试间)因素或两者混合的情况下,对连续解释变量(协变量)进行建模;(3)在协变量建模中进行个体特定的调整;(4)通过多个基函数估计血流动力学响应(HDR)函数的组分析;(5)纵向研究中各种缺失数据的情况;(6)涉及家庭成员或双胞胎的组研究。在这里,我们提出了一种线性混合效应模型(LME)方法,该方法将常规的组分析方法扩展到分析许多复杂的情况,包括上述六个原型,否则这些情况在传统的框架(如 AN(C)OVA 和广义线性模型(GLM))下分析会很困难或不可行。此外,LME 框架的优势在于其灵活的建模和估计随机效应和残差的方差-协方差结构。即使存在混杂的固定效应,通过具有交叉随机效应的 LME 模型也可以轻松获得组内相关系数(ICC)值。一个原型场景的模拟表明,LME 模型在控制假阳性和激活检测敏感性之间取得了平衡。假设制定的重要性也在模拟中得到了说明。详细讨论了与替代组分析方法的比较和 LME 的局限性。

相似文献

1
Linear mixed-effects modeling approach to FMRI group analysis.
Neuroimage. 2013 Jun;73:176-90. doi: 10.1016/j.neuroimage.2013.01.047. Epub 2013 Jan 30.
2
Applications of multivariate modeling to neuroimaging group analysis: a comprehensive alternative to univariate general linear model.
Neuroimage. 2014 Oct 1;99:571-88. doi: 10.1016/j.neuroimage.2014.06.027. Epub 2014 Jun 17.
3
Intraclass correlation: Improved modeling approaches and applications for neuroimaging.
Hum Brain Mapp. 2018 Mar;39(3):1187-1206. doi: 10.1002/hbm.23909. Epub 2017 Dec 7.
5
General multilevel linear modeling for group analysis in FMRI.
Neuroimage. 2003 Oct;20(2):1052-63. doi: 10.1016/S1053-8119(03)00435-X.
6
Untangling the relatedness among correlations, Part II: Inter-subject correlation group analysis through linear mixed-effects modeling.
Neuroimage. 2017 Feb 15;147:825-840. doi: 10.1016/j.neuroimage.2016.08.029. Epub 2016 Oct 15.
8
Evaluation and comparison of GLM- and CVA-based fMRI processing pipelines with Java-based fMRI processing pipeline evaluation system.
Neuroimage. 2008 Jul 15;41(4):1242-52. doi: 10.1016/j.neuroimage.2008.03.034. Epub 2008 Apr 3.
9
A heuristic for the degrees of freedom of statistics based on multiple variance parameters.
Neuroimage. 2003 Sep;20(1):591-600. doi: 10.1016/s1053-8119(03)00308-2.
10
Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data.
Neuroimage. 2013 Nov 1;81:358-370. doi: 10.1016/j.neuroimage.2013.05.049. Epub 2013 May 20.

引用本文的文献

1
Multimodal neuroimaging of fatigability development.
Imaging Neurosci (Camb). 2025 Sep 2;3. doi: 10.1162/IMAG.a.132. eCollection 2025.
2
Resting-state functional connectivity of the marmoset claustrum.
Imaging Neurosci (Camb). 2025 Aug 12;3. doi: 10.1162/IMAG.a.109. eCollection 2025.
3
Multimodal state-dependent connectivity analysis of arousal and autonomic centers in the brainstem and basal forebrain.
Imaging Neurosci (Camb). 2025 Jul 21;3. doi: 10.1162/IMAG.a.91. eCollection 2025.
4
MDMA modulates human sensorimotor cortical pathways during gentle touch.
Imaging Neurosci (Camb). 2024 Oct 17;2. doi: 10.1162/imag_a_00316. eCollection 2024.
9
Habenula alterations in resting state functional connectivity among autistic individuals.
bioRxiv. 2025 May 14:2025.05.14.653992. doi: 10.1101/2025.05.14.653992.

本文引用的文献

1
Response to learned threat: An FMRI study in adolescent and adult anxiety.
Am J Psychiatry. 2013 Oct;170(10):1195-204. doi: 10.1176/appi.ajp.2013.12050651.
2
Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models.
Neuroimage. 2013 Feb 1;66:249-60. doi: 10.1016/j.neuroimage.2012.10.065. Epub 2012 Oct 30.
3
Multiscale adaptive marginal analysis of longitudinal neuroimaging data with time-varying covariates.
Biometrics. 2012 Dec;68(4):1083-92. doi: 10.1111/j.1541-0420.2012.01767.x. Epub 2012 May 2.
4
Multiple imputation of missing fMRI data in whole brain analysis.
Neuroimage. 2012 Apr 15;60(3):1843-55. doi: 10.1016/j.neuroimage.2012.01.123. Epub 2012 Feb 10.
6
TwinMARM: two-stage multiscale adaptive regression methods for twin neuroimaging data.
IEEE Trans Med Imaging. 2012 May;31(5):1100-12. doi: 10.1109/TMI.2012.2185830. Epub 2012 Jan 24.
7
FMRI group analysis combining effect estimates and their variances.
Neuroimage. 2012 Mar;60(1):747-65. doi: 10.1016/j.neuroimage.2011.12.060. Epub 2011 Dec 30.
8
Variability of the relationship between electrophysiology and BOLD-fMRI across cortical regions in humans.
J Neurosci. 2011 Sep 7;31(36):12855-65. doi: 10.1523/JNEUROSCI.1457-11.2011.
9
Human metabolic profiles are stably controlled by genetic and environmental variation.
Mol Syst Biol. 2011 Aug 30;7:525. doi: 10.1038/msb.2011.57.
10
Statistical inference in mixed models and analysis of twin and family data.
Biometrics. 2011 Sep;67(3):987-95. doi: 10.1111/j.1541-0420.2010.01548.x. Epub 2011 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验