Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States.
J Am Chem Soc. 2013 Mar 6;135(9):3613-9. doi: 10.1021/ja312314b. Epub 2013 Feb 25.
Ion pairing is one of the most fundamental chemical interactions and is essential for molecular recognition by biological macromolecules. From an experimental standpoint, very little is known to date about ion-pair dynamics in biological macromolecular systems. Absorption, infrared, and Raman spectroscopic methods were previously used to characterize dynamic properties of ion pairs, but these methods can be applied only to small compounds. Here, using NMR (15)N relaxation and hydrogen-bond scalar (15)N-(31)P J-couplings ((h3)J(NP)), we have investigated the dynamics of the ion pairs between lysine side-chain NH3(+) amino groups and DNA phosphate groups at the molecular interface of the HoxD9 homeodomain-DNA complex. We have determined the order parameters and the correlation times for C-N bond rotation and reorientation of the lysine NH3(+) groups. Our data indicate that the NH3(+) groups in the intermolecular ion pairs are highly dynamic at the protein-DNA interface, which should lower the entropic costs for protein-DNA association. Judging from the C-N bond-rotation correlation times along with experimental and quantum-chemically derived (h3)J(NP) hydrogen-bond scalar couplings, it seems that breakage of hydrogen bonds in the ion pairs occurs on a sub-nanosecond time scale. Interestingly, the oxygen-to-sulfur substitution in a DNA phosphate group was found to enhance the mobility of the NH3(+) group in the intermolecular ion pair. This can partially account for the affinity enhancement of the protein-DNA association by the oxygen-to-sulfur substitution, which is a previously observed but poorly understood phenomenon.
离子对相互作用是最基本的化学相互作用之一,对于生物大分子的分子识别至关重要。从实验的角度来看,目前对于生物大分子体系中离子对动力学的了解非常有限。以前曾使用吸收、红外和拉曼光谱方法来表征离子对的动态特性,但这些方法只能应用于小分子。在这里,我们使用 NMR(15)N 弛豫和氢键标量(15)N-(31)P J 耦合((h3)J(NP)),研究了 HoxD9 同源域-DNA 复合物分子界面中赖氨酸侧链 NH3(+)氨基与 DNA 磷酸基团之间的离子对的动力学。我们确定了 C-N 键旋转和赖氨酸 NH3(+)基团取向的顺序参数和相关时间。我们的数据表明,蛋白质-DNA 界面处的分子间离子对中的 NH3(+)基团具有高度动态性,这应该降低蛋白质-DNA 结合的熵成本。从 C-N 键旋转相关时间以及实验和量子化学推导的(h3)J(NP)氢键标量耦合来看,似乎离子对中的氢键在亚纳秒时间尺度上断裂。有趣的是,发现 DNA 磷酸基团中的氧到硫取代会增强分子间离子对中 NH3(+)基团的迁移率。这部分解释了蛋白质-DNA 结合亲和力增强的原因,这种氧到硫取代是以前观察到但理解不足的现象。