Suppr超能文献

研究设计对活动类型分类器的开发和评估的影响。

Impact of study design on development and evaluation of an activity-type classifier.

机构信息

Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Cambridge, United Kingdom.

出版信息

J Appl Physiol (1985). 2013 Apr;114(8):1042-51. doi: 10.1152/japplphysiol.00984.2012. Epub 2013 Feb 21.

Abstract

Methods to classify activity types are often evaluated with an experimental protocol involving prescribed physical activities under confined (laboratory) conditions, which may not reflect real-life conditions. The present study aims to evaluate how study design may impact on classifier performance in real life. Twenty-eight healthy participants (21-53 yr) were asked to wear nine triaxial accelerometers while performing 58 activity types selected to simulate activities in real life. For each sensor location, logistic classifiers were trained in subsets of up to 8 activities to distinguish between walking and nonwalking activities and were then evaluated in all 58 activities. Different weighting factors were used to convert the resulting confusion matrices into an estimation of the confusion matrix as would apply in the real-life setting by creating four different real-life scenarios, as well as one traditional laboratory scenario. The sensitivity of a classifier estimated with a traditional laboratory protocol is within the range of estimates derived from real-life scenarios for any body location. The specificity, however, was systematically overestimated by the traditional laboratory scenario. Walking time was systematically overestimated, except for lower back sensor data (range: 7-757%). In conclusion, classifier performance under confined conditions may not accurately reflect classifier performance in real life. Future studies that aim to evaluate activity classification methods are warranted to pay special attention to the representativeness of experimental conditions for real-life conditions.

摘要

方法来分类活动类型通常是评估与实验方案涉及规定的体育活动在封闭(实验室)条件下,这可能无法反映现实生活条件。本研究旨在评估研究设计如何可能影响分类器的性能在现实生活中。二十八名健康参与者(21-53 岁)被要求佩戴九个三轴加速度计,同时执行 58 种活动类型,以模拟现实生活中的活动。对于每个传感器位置,逻辑分类器被训练在最多 8 个活动的子集之间,以区分行走和非行走活动,然后在所有 58 个活动中进行评估。不同的权重因素被用来将得到的混淆矩阵转换为一个估计的混淆矩阵,这将适用于现实生活环境通过创建四个不同的现实生活场景,以及一个传统的实验室场景。用传统的实验室方案估计的分类器的灵敏度在任何身体位置的现实生活场景的估计值范围内。然而,特异性被传统的实验室场景系统地高估了。行走时间被系统地高估了,除了下背部传感器的数据(范围:7-757%)。总之,在封闭条件下的分类器性能可能无法准确反映分类器在现实生活中的性能。未来的研究旨在评估活动分类方法是值得特别注意的代表性的实验条件为现实生活条件。

相似文献

1
Impact of study design on development and evaluation of an activity-type classifier.
J Appl Physiol (1985). 2013 Apr;114(8):1042-51. doi: 10.1152/japplphysiol.00984.2012. Epub 2013 Feb 21.
2
Single-accelerometer-based daily physical activity classification.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6107-10. doi: 10.1109/IEMBS.2009.5334925.
4
Optimal placement of accelerometers for the detection of everyday activities.
Sensors (Basel). 2013 Jul 17;13(7):9183-200. doi: 10.3390/s130709183.
5
Activity classification using realistic data from wearable sensors.
IEEE Trans Inf Technol Biomed. 2006 Jan;10(1):119-28. doi: 10.1109/titb.2005.856863.
6
Genetic algorithm-based classifiers fusion for multisensor activity recognition of elderly people.
IEEE J Biomed Health Inform. 2015 Jan;19(1):282-9. doi: 10.1109/JBHI.2014.2313473. Epub 2014 Apr 21.
7
ZigBee-based wireless multi-sensor system for physical activity assessment.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:846-9. doi: 10.1109/IEMBS.2011.6090193.
10
Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring.
IEEE Trans Inf Technol Biomed. 2006 Jan;10(1):156-67. doi: 10.1109/titb.2005.856864.

引用本文的文献

1
Assessing the Transferability of Physical Activity Type Detection Models: Influence of Age Group Is Underappreciated.
Front Physiol. 2021 Oct 22;12:738939. doi: 10.3389/fphys.2021.738939. eCollection 2021.
2
A systematic review of smartphone-based human activity recognition methods for health research.
NPJ Digit Med. 2021 Oct 18;4(1):148. doi: 10.1038/s41746-021-00514-4.
3
Using Accelerometer and GPS Data for Real-Life Physical Activity Type Detection.
Sensors (Basel). 2020 Jan 21;20(3):588. doi: 10.3390/s20030588.
4
Towards a Portable Model to Discriminate Activity Clusters from Accelerometer Data.
Sensors (Basel). 2019 Oct 17;19(20):4504. doi: 10.3390/s19204504.
5
The Key Factors in Physical Activity Type Detection Using Real-Life Data: A Systematic Review.
Front Physiol. 2019 Feb 12;10:75. doi: 10.3389/fphys.2019.00075. eCollection 2019.
6
Segmenting accelerometer data from daily life with unsupervised machine learning.
PLoS One. 2019 Jan 9;14(1):e0208692. doi: 10.1371/journal.pone.0208692. eCollection 2019.
7
Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
J Neuroeng Rehabil. 2018 Nov 15;15(1):105. doi: 10.1186/s12984-018-0456-x.
10
Physical Behavior in Older Persons during Daily Life: Insights from Instrumented Shoes.
Sensors (Basel). 2016 Aug 3;16(8):1225. doi: 10.3390/s16081225.

本文引用的文献

1
The challenge of assessing physical activity in populations.
Lancet. 2012 Nov 3;380(9853):1555; author reply 1555-6. doi: 10.1016/S0140-6736(12)61876-5.
2
Agreement between activPAL and ActiGraph for assessing children's sedentary time.
Int J Behav Nutr Phys Act. 2012 Feb 19;9:15. doi: 10.1186/1479-5868-9-15.
3
Time spent in physical activity and sedentary behaviors on the working day: the American time use survey.
J Occup Environ Med. 2011 Dec;53(12):1382-7. doi: 10.1097/JOM.0b013e31823c1402.
5
Physical activity classification using the GENEA wrist-worn accelerometer.
Med Sci Sports Exerc. 2012 Apr;44(4):742-8. doi: 10.1249/MSS.0b013e31823bf95c.
7
Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: validation on an independent sample.
J Appl Physiol (1985). 2011 Dec;111(6):1804-12. doi: 10.1152/japplphysiol.00309.2011. Epub 2011 Sep 1.
8
Identifying types of physical activity with a single accelerometer: evaluating laboratory-trained algorithms in daily life.
IEEE Trans Biomed Eng. 2011 Sep;58(9):2656-63. doi: 10.1109/TBME.2011.2160723. Epub 2011 Jun 27.
9
Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity.
PLoS One. 2011;6(5):e19657. doi: 10.1371/journal.pone.0019657. Epub 2011 May 25.
10
Recognition of activities in children by two uniaxial accelerometers in free-living conditions.
Eur J Appl Physiol. 2011 Aug;111(8):1917-27. doi: 10.1007/s00421-011-1828-0. Epub 2011 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验