Theil Elizabeth C, Behera Rabindra K, Tosha Takehiko
Children's Hospital Oakland Research Institute, University of California, Berkeley ; Department of Nutritional Science and Toxicology, University of California, Berkeley.
Coord Chem Rev. 2013 Jan 15;257(2):579-586. doi: 10.1016/j.ccr.2012.05.013. Epub 2012 May 18.
Ferritins, highly symmetrical protein nanocages, are reactors for Fe and dioxygen or hydrogen peroxide that are found in all kingdoms of life and in many different cells of multicellular organisms. They synthesize iron concentrates required for cells to make cofactors of iron proteins (heme, FeS, mono and diiron). The caged ferritin biominerals, FeO•HO are also antioxidants, acting as sinks for iron and oxidants scavenged from damaged proteins; genetic regulation of ferritin biosynthesis is sensitive to both iron and oxidants. Here, the emphasis here is ferritin oxidoreductase chemistry, ferritin ion channels for Fe transit into and out of the protein cage and Fe O mineral nucleation, and uses of ferritin cages in nanocatalysis and nanomaterial synthesis. The Fe and O ferritin protein reactors, likely critical in the transition from anaerobic to aerobic life on earth, play central, contemporary roles that balance iron and oxygen chemistry in biology and have emerging roles in nanotechnology.
铁蛋白是高度对称的蛋白质纳米笼,是铁与双原子氧或过氧化氢的反应体,存在于所有生命王国以及多细胞生物的许多不同细胞中。它们合成细胞制造铁蛋白辅因子(血红素、铁硫簇、单核和双核铁)所需的铁浓缩物。笼状铁蛋白生物矿物质FeO•HO也是抗氧化剂,可作为铁的汇集处以及从受损蛋白质中清除的氧化剂;铁蛋白生物合成的基因调控对铁和氧化剂都很敏感。在此,重点是铁蛋白氧化还原酶化学、铁进出蛋白质笼的铁离子通道以及FeO矿物质成核,以及铁蛋白笼在纳米催化和纳米材料合成中的应用。铁和氧铁蛋白蛋白质反应体可能在地球上从厌氧生命向需氧生命的转变中起关键作用,在当代起着核心作用,平衡生物学中的铁和氧化学,并在纳米技术中发挥着新出现的作用。