Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
FASEB J. 2013 Jul;27(7):2573-83. doi: 10.1096/fj.13-227728. Epub 2013 Mar 15.
Maresins are produced by macrophages from docosahexaenoic acid (DHA) and exert potent proresolving and tissue homeostatic actions. Maresin 1 (MaR1; 7R,14S-dihydroxy-docosa-4Z,8E,10E,12Z,16Z,19Z-hexaenoic acid) is the first identified maresin. Here, we investigate formation, stereochemistry, and precursor role of 13,14-epoxy-docosahexaenoic acid, an intermediate in MaR1 biosynthesis. The 14-lipoxygenation of DHA by human macrophage 12-lipoxygenase (hm12-LOX) gave 14-hydro(peroxy)-docosahexaenoic acid (14-HpDHA), as well as several dihydroxy-docosahexaenoic acids, implicating an epoxide intermediate formation by this enzyme. Using a stereo-controlled synthesis, enantiomerically pure 13S,14S-epoxy-docosa-4Z,7Z,9E,11E,16Z,19Z-hexaenoic acid (13S,14S-epoxy-DHA) was prepared, and its stereochemistry was confirmed by NMR spectroscopy. When this 13S,14S-epoxide was incubated with human macrophages, it was converted to MaR1. The synthetic 13S,14S-epoxide inhibited leukotriene B4 (LTB4) formation by human leukotriene A4 hydrolase (LTA4H) ∼40% (P<0.05) to a similar extent as LTA4 (∼50%, P<0.05) but was not converted to MaR1 by this enzyme. 13S,14S-epoxy-DHA also reduced (∼60%; P<0.05) arachidonic acid conversion by hm12-LOX and promoted conversion of M1 macrophages to M2 phenotype, which produced more MaR1 from the epoxide than M1. Together, these findings establish the biosynthesis of the 13S,14S-epoxide, its absolute stereochemistry, its precursor role in MaR1 biosynthesis, and its own intrinsic bioactivity. Given its actions and role in MaR1 biosynthesis, this epoxide is now termed 13,14-epoxy-maresin (13,14-eMaR) and exhibits new mechanisms in resolution of inflammation in its ability to inhibit proinflammatory mediator production by LTA4 hydrolase and to block arachidonate conversion by human 12-LOX rather than merely terminating phagocyte involvement.
maresin 是由巨噬细胞从二十二碳六烯酸(DHA)产生的,具有很强的促解决和组织内稳态作用。maresin 1(MaR1;7R,14S-二羟基二十二碳四 Z,8E,10E,12Z,16Z,19Z-六烯酸)是第一个被识别的maresin。在这里,我们研究了 13,14-环氧-DHA 的形成、立体化学和前体作用,13,14-环氧-DHA 是 MaR1 生物合成的中间产物。人巨噬细胞 12-脂氧合酶(hm12-LOX)对 DHA 的 14-脂氧合作用产生了 14-羟(过氧)-二十二碳六烯酸(14-HpDHA),以及几种二羟基二十二碳六烯酸,表明该酶形成环氧中间产物。通过立体控制合成,制备了对映体纯的 13S,14S-环氧二十二碳四 Z,7Z,9E,11E,16Z,19Z-六烯酸(13S,14S-环氧-DHA),并通过 NMR 光谱证实了其立体化学。当这种 13S,14S-环氧化物与人类巨噬细胞孵育时,它转化为 MaR1。合成的 13S,14S-环氧化物抑制人白三烯 A4 水解酶(LTA4H)形成白三烯 B4(LTB4)的作用约为 40%(P<0.05),与 LTA4(约 50%,P<0.05)相似,但不被 LTA4 转化为 MaR1。13S,14S-环氧-DHA 还降低了 hm12-LOX 转化的花生四烯酸的转化率(约 60%;P<0.05),并促进 M1 巨噬细胞向 M2 表型转化,M2 产生的 MaR1 比 M1 多。综上所述,这些发现确立了 13S,14S-环氧化物的生物合成、其绝对立体化学、其在 MaR1 生物合成中的前体作用以及其自身的内在生物活性。鉴于其作用及其在 MaR1 生物合成中的作用,这种环氧化物现在被称为 13,14-环氧马雷辛(13,14-eMaR),并因其能够抑制 LTA4 水解酶产生促炎介质和阻止人 12-LOX 转化花生四烯酸的能力而具有新的炎症解决机制,而不仅仅是终止吞噬细胞的参与。