Electrical and Computer Engineering Department, Duke University, Durham, North Carolina 27708, United States.
Nano Lett. 2013 Apr 10;13(4):1481-8. doi: 10.1021/nl3045525. Epub 2013 Mar 28.
Photoelectrochemical (PEC) water splitting and solar fuels hold great promise for harvesting solar energy. TiO2-based photoelectrodes for water splitting have been intensively investigated since 1972. However, solar-to-fuel conversion efficiencies of TiO2 photoelectrodes are still far lower than theoretical values. This is partially due to the dilemma of a short minority carrier diffusion length, and long optical penetration depth, as well as inefficient electron collection. We report here the synthesis of TiO2 PEC electrodes by coating solution-processed antimony-doped tin oxide nanoparticle films (nanoATO) on FTO glass with TiO2 through atomic layer deposition. The conductive, porous nanoATO film-supported TiO2 electrodes, yielded a highest photocurrent density of 0.58 mA/cm(2) under AM 1.5G simulated sunlight of 100 mW/cm(2). This is approximately 3× the maximum photocurrent density of planar TiO2 PEC electrodes on FTO glass. The enhancement is ascribed to the conductive interconnected porous nanoATO film, which decouples the dimensions for light absorption and charge carrier diffusion while maintaining efficient electron collection. Transient photocurrent measurements showed that nanoATO films reduce charge recombination by accelerating transport of photoelectrons through the less defined conductive porous nanoATO network. Owing to the large band gap, scalable solution processed porous nanoATO films are promising as a framework to replace other conductive scaffolds for PEC electrodes.
光电化学(PEC)水分解和太阳能燃料在利用太阳能方面具有巨大的潜力。自 1972 年以来,人们一直在深入研究基于 TiO2 的光电化学电极用于水分解。然而,TiO2 光电化学电极的太阳能到燃料的转换效率仍然远远低于理论值。这部分是由于短少数载流子扩散长度与长光学穿透深度以及电子收集效率低之间的困境造成的。我们在此报告了通过原子层沉积在 FTO 玻璃上的 TiO2 涂覆溶液处理的掺锑氧化锡纳米颗粒膜(nanoATO)来合成 PEC 电极。导电多孔的 nanoATO 薄膜支撑的 TiO2 电极在 AM 1.5G 模拟阳光下的 100 mW/cm2 下产生了 0.58 mA/cm2 的最大光电流密度。这大约是 FTO 玻璃上平面 TiO2 PEC 电极的最大光电流密度的 3 倍。增强归因于导电互连的多孔 nanoATO 薄膜,它解耦了光吸收和载流子扩散的尺寸,同时保持了有效的电子收集。瞬态光电流测量表明,nanoATO 薄膜通过加速光电子通过不太确定的导电多孔 nanoATO 网络的输运来减少电荷复合。由于大的带隙,可扩展的溶液处理多孔 nanoATO 薄膜有望作为替代其他导电支架的框架,用于 PEC 电极。