Suppr超能文献

线粒体动态在营养利用和能量消耗调节中的作用。

Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure.

机构信息

Department of Medicine, Obesity and Nutrition Section, Mitochondria ARC, Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA.

出版信息

Cell Metab. 2013 Apr 2;17(4):491-506. doi: 10.1016/j.cmet.2013.03.002.

Abstract

Mitochondrial fusion, fission, and mitophagy form an essential axis of mitochondrial quality control. However, quality control might not be the only task carried out by mitochondrial dynamics. Recent studies link mitochondrial dynamics to the balance between energy demand and nutrient supply, suggesting changes in mitochondrial architecture as a mechanism for bioenergetic adaptation to metabolic demands. By favoring either connected or fragmented architectures, mitochondrial dynamics regulates bioenergetic efficiency and energy expenditure. Placement of bioenergetic adaptation and quality control as competing tasks of mitochondrial dynamics might provide a new mechanism, linking excess nutrient environment to progressive mitochondrial dysfunction, common to age-related diseases.

摘要

线粒体融合、裂变和自噬形成了线粒体质量控制的重要轴。然而,质量控制可能不是线粒体动力学执行的唯一任务。最近的研究将线粒体动力学与能量需求和营养供应之间的平衡联系起来,表明线粒体结构的变化是生物能适应代谢需求的一种机制。通过促进连接或碎片化的结构,线粒体动力学调节生物能效率和能量消耗。将生物能适应和质量控制作为线粒体动力学的竞争任务来处理,可能为过度营养环境与与年龄相关的疾病中常见的进行性线粒体功能障碍之间提供一种新的机制。

相似文献

1
Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure.
Cell Metab. 2013 Apr 2;17(4):491-506. doi: 10.1016/j.cmet.2013.03.002.
2
Emerging Concepts in Diabetes: Mitochondrial Dynamics and Glucose Homeostasis.
Curr Diabetes Rev. 2017;13(4):370-385. doi: 10.2174/1573399812666151012115229.
3
Bioenergetic role of mitochondrial fusion and fission.
Biochim Biophys Acta. 2012 Oct;1817(10):1833-8. doi: 10.1016/j.bbabio.2012.02.033. Epub 2012 Mar 5.
5
Mitochondrial dynamics and morphology in beta-cells.
Best Pract Res Clin Endocrinol Metab. 2012 Dec;26(6):725-38. doi: 10.1016/j.beem.2012.05.004. Epub 2012 Jul 26.
6
Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications.
Redox Biol. 2017 Apr;11:637-645. doi: 10.1016/j.redox.2017.01.013. Epub 2017 Jan 16.
7
Role of Mitochondrial Dysfunction in Hypertension and Obesity.
Curr Hypertens Rep. 2017 Feb;19(2):11. doi: 10.1007/s11906-017-0710-9.
8
Autophagy and Mitochondria in Obesity and Type 2 Diabetes.
Curr Diabetes Rev. 2017;13(4):352-369. doi: 10.2174/1573399812666160217122530.
9
Mitochondrial Dynamics and Microglia as New Targets in Metabolism Regulation.
Int J Mol Sci. 2020 May 13;21(10):3450. doi: 10.3390/ijms21103450.
10
Skeletal muscle mitochondrial uncoupling, adaptive thermogenesis and energy expenditure.
Curr Opin Clin Nutr Metab Care. 2011 May;14(3):243-9. doi: 10.1097/MCO.0b013e3283455d7a.

引用本文的文献

2
Research Progress of Mitochondrial Dynamics and Autophagy in Diabetic Complications: New Treatment Strategies.
Diabetes Metab Syndr Obes. 2025 Sep 2;18:3167-3180. doi: 10.2147/DMSO.S541768. eCollection 2025.
3
Liver-specific loss of perturbs lipid metabolism and hepatocyte integrity.
Autophagy Rep. 2025 Sep 2;4(1):2551028. doi: 10.1080/27694127.2025.2551028. eCollection 2025.
4
Mitochondrial Biogenesis in Skeletal Muscle.
Adv Exp Med Biol. 2025;1478:19-50. doi: 10.1007/978-3-031-88361-3_2.
7
MacroD1 sustains mitochondrial integrity and oxidative metabolism.
Nat Commun. 2025 Aug 15;16(1):7595. doi: 10.1038/s41467-025-62410-9.
8
The Malate-Aspartate Shuttle supports thermogenic lipid mobilization in brown adipocytes.
bioRxiv. 2025 Aug 6:2025.08.04.667739. doi: 10.1101/2025.08.04.667739.
9
Light-dark dependent changes in chloroplast and mitochondrial activity in .
Front Plant Sci. 2025 Jul 17;16:1622214. doi: 10.3389/fpls.2025.1622214. eCollection 2025.
10
Coenzyme Q10 and Obesity: An Overview.
Antioxidants (Basel). 2025 Jul 16;14(7):871. doi: 10.3390/antiox14070871.

本文引用的文献

2
Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis.
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5523-8. doi: 10.1073/pnas.1108220109. Epub 2012 Mar 16.
4
Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans.
J Clin Invest. 2012 Feb;122(2):545-52. doi: 10.1172/JCI60433. Epub 2012 Jan 24.
5
Significance of uncoupling protein 3 in mitochondrial function upon mid- and long-term dietary high-fat exposure.
FEBS Lett. 2011 Dec 15;585(24):4010-7. doi: 10.1016/j.febslet.2011.11.012. Epub 2011 Nov 21.
6
Mitochondrial fusion is essential for organelle function and cardiac homeostasis.
Circ Res. 2011 Dec 9;109(12):1327-31. doi: 10.1161/CIRCRESAHA.111.258723. Epub 2011 Nov 3.
7
Fatty acids suppress autophagic turnover in β-cells.
J Biol Chem. 2011 Dec 9;286(49):42534-42544. doi: 10.1074/jbc.M111.242412. Epub 2011 Aug 21.
8
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10190-5. doi: 10.1073/pnas.1107402108. Epub 2011 Jun 6.
9
Uncoupled respiration, ROS production, acute lipotoxicity and oxidative damage in isolated skeletal muscle mitochondria from UCP3-ablated mice.
Biochim Biophys Acta. 2011 Sep;1807(9):1095-105. doi: 10.1016/j.bbabio.2011.04.003. Epub 2011 May 1.
10
The dynamin-related GTPase Opa1 is required for glucose-stimulated ATP production in pancreatic beta cells.
Mol Biol Cell. 2011 Jul 1;22(13):2235-45. doi: 10.1091/mbc.E10-12-0933. Epub 2011 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验