The Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada M5B 1W8.
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):E2308-16. doi: 10.1073/pnas.1216382110. Epub 2013 May 3.
Alveolar fluid clearance driven by active epithelial Na(+) and secondary Cl(-) absorption counteracts edema formation in the intact lung. Recently, we showed that impairment of alveolar fluid clearance because of inhibition of epithelial Na(+) channels (ENaCs) promotes cardiogenic lung edema. Concomitantly, we observed a reversal of alveolar fluid clearance, suggesting that reversed transepithelial ion transport may promote lung edema by driving active alveolar fluid secretion. We, therefore, hypothesized that alveolar ion and fluid secretion may constitute a pathomechanism in lung edema and aimed to identify underlying molecular pathways. In isolated perfused lungs, alveolar fluid clearance and secretion were determined by a double-indicator dilution technique. Transepithelial Cl(-) secretion and alveolar Cl(-) influx were quantified by radionuclide tracing and alveolar Cl(-) imaging, respectively. Elevated hydrostatic pressure induced ouabain-sensitive alveolar fluid secretion that coincided with transepithelial Cl(-) secretion and alveolar Cl(-) influx. Inhibition of either cystic fibrosis transmembrane conductance regulator (CFTR) or Na(+)-K(+)-Cl(-) cotransporters (NKCC) blocked alveolar fluid secretion, and lungs of CFTR(-/-) mice were protected from hydrostatic edema. Inhibition of ENaC by amiloride reproduced alveolar fluid and Cl(-) secretion that were again CFTR-, NKCC-, and Na(+)-K(+)-ATPase-dependent. Our findings show a reversal of transepithelial Cl(-) and fluid flux from absorptive to secretory mode at hydrostatic stress. Alveolar Cl(-) and fluid secretion are triggered by ENaC inhibition and mediated by NKCC and CFTR. Our results characterize an innovative mechanism of cardiogenic edema formation and identify NKCC1 as a unique therapeutic target in cardiogenic lung edema.
肺泡液体清除由活跃的上皮钠通道(ENaC)和继发的氯离子吸收驱动,可对抗完整肺中的水肿形成。最近,我们发现,由于上皮钠通道(ENaC)的抑制导致肺泡液体清除受损,会促进心源性肺水肿。同时,我们观察到肺泡液体清除的逆转,这表明反向跨上皮离子转运可能通过驱动活跃的肺泡液体分泌来促进肺水肿。因此,我们假设肺泡离子和液体分泌可能构成肺水肿的病理机制,并旨在确定潜在的分子途径。在分离的灌注肺中,通过双指示剂稀释技术确定肺泡液体清除和分泌。通过放射性示踪和肺泡 Cl(-)成像分别定量测量跨上皮 Cl(-)分泌和肺泡 Cl(-)内流。升高的静水压力诱导哇巴因敏感的肺泡液体分泌,与跨上皮 Cl(-)分泌和肺泡 Cl(-)内流同时发生。囊性纤维化跨膜电导调节剂(CFTR)或钠钾氯共转运体(NKCC)的抑制阻断了肺泡液体分泌,而 CFTR(-/-)小鼠的肺则免受静水水肿的影响。阿米洛利抑制 ENaC 可再现肺泡液体和 Cl(-)分泌,这再次依赖于 CFTR、NKCC 和 Na(+)-K(+)-ATP 酶。我们的研究结果表明,在静水压力下,跨上皮 Cl(-)和液体通量从吸收模式转变为分泌模式。肺泡 Cl(-)和液体分泌是由 ENaC 抑制触发的,并由 NKCC 和 CFTR 介导。我们的研究结果描述了一种新型的心源性水肿形成机制,并确定 NKCC1 是心源性肺水肿的独特治疗靶点。