Suppr超能文献

活体构筑学:皮质中心视角。

In vivo architectonics: a cortico-centric perspective.

机构信息

Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.

Department of Anatomy & Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.

出版信息

Neuroimage. 2014 Jun;93 Pt 2:157-64. doi: 10.1016/j.neuroimage.2013.04.095. Epub 2013 May 3.

Abstract

Recent advances in noninvasive structural imaging have opened up new approaches to cortical parcellation, many of which are described in this special issue on In Vivo Brodmann Mapping. In this introductory article, we focus on the emergence of cortical myelin maps as a valuable way to assess cortical organization in humans and nonhuman primates. We demonstrate how myelin maps are useful in three general domains: (i) as a way to identify cortical areas and functionally specialized regions in individuals and group averages; (ii) as a substrate for improved intersubject registration; and (iii) as a basis for interspecies comparisons. We also discuss how myelin-based cortical parcellation is complementary in important ways to connectivity-based parcellation using functional MRI or diffusion imaging and tractography. These observations and perspectives provide a useful background and context for other articles in this special issue.

摘要

最近非侵入性结构成像方面的进展为皮质分割开辟了新的途径,其中许多方法都在本期关于活体布罗德曼映射的特刊中有所描述。在这篇介绍性文章中,我们专注于皮质髓鞘图谱的出现,将其作为评估人类和非人灵长类动物皮质组织的一种有价值的方法。我们展示了髓鞘图谱在三个一般领域中的应用:(i)作为在个体和群体平均值中识别皮质区域和功能特化区域的方法;(ii)作为改善受试者间配准的基础;(iii)作为物种间比较的基础。我们还讨论了基于髓鞘的皮质分割如何以重要的方式补充基于功能 MRI 或扩散成像和轨迹的连接性分割。这些观察和观点为本期特刊中的其他文章提供了有用的背景和上下文。

相似文献

1
In vivo architectonics: a cortico-centric perspective.
Neuroimage. 2014 Jun;93 Pt 2:157-64. doi: 10.1016/j.neuroimage.2013.04.095. Epub 2013 May 3.
2
Trends and properties of human cerebral cortex: correlations with cortical myelin content.
Neuroimage. 2014 Jun;93 Pt 2:165-75. doi: 10.1016/j.neuroimage.2013.03.060. Epub 2013 Apr 6.
3
Connectivity-based parcellation of normal and anatomically distorted human cerebral cortex.
Hum Brain Mapp. 2022 Mar;43(4):1358-1369. doi: 10.1002/hbm.25728. Epub 2021 Nov 26.
4
Parcellating Cerebral Cortex: How Invasive Animal Studies Inform Noninvasive Mapmaking in Humans.
Neuron. 2018 Aug 22;99(4):640-663. doi: 10.1016/j.neuron.2018.07.002.
5
Fiber length profiling: A novel approach to structural brain organization.
Neuroimage. 2019 Feb 1;186:164-173. doi: 10.1016/j.neuroimage.2018.10.070. Epub 2018 Nov 3.
6
A flexible graphical model for multi-modal parcellation of the cortex.
Neuroimage. 2017 Nov 15;162:226-248. doi: 10.1016/j.neuroimage.2017.09.005. Epub 2017 Sep 6.
7
On the cortical connectivity in the macaque brain: A comparison of diffusion tractography and histological tracing data.
Neuroimage. 2020 Nov 1;221:117201. doi: 10.1016/j.neuroimage.2020.117201. Epub 2020 Jul 30.
8
Using high-resolution quantitative mapping of R1 as an index of cortical myelination.
Neuroimage. 2014 Jun;93 Pt 2:176-88. doi: 10.1016/j.neuroimage.2013.06.005. Epub 2013 Jun 10.
9
Group-wise parcellation of the cortex through multi-scale spectral clustering.
Neuroimage. 2016 Aug 1;136:68-83. doi: 10.1016/j.neuroimage.2016.05.035. Epub 2016 May 15.
10
Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI.
J Neurosci. 2011 Aug 10;31(32):11597-616. doi: 10.1523/JNEUROSCI.2180-11.2011.

引用本文的文献

1
Synthetic data in generalizable, learning-based neuroimaging.
Imaging Neurosci (Camb). 2024 Nov 19;2:1-22. doi: 10.1162/imag_a_00337. eCollection 2024 Nov 1.
2
Organization of the human cerebral cortex estimated within individuals: networks, global topography, and function.
J Neurophysiol. 2024 Jun 1;131(6):1014-1082. doi: 10.1152/jn.00308.2023. Epub 2024 Mar 15.
4
Within-Individual Organization of the Human Cerebral Cortex: Networks, Global Topography, and Function.
bioRxiv. 2023 Aug 10:2023.08.08.552437. doi: 10.1101/2023.08.08.552437.
5
Homotopic local-global parcellation of the human cerebral cortex from resting-state functional connectivity.
Neuroimage. 2023 Jun;273:120010. doi: 10.1016/j.neuroimage.2023.120010. Epub 2023 Mar 12.
6
Mapping myelin in white matter with T1-weighted/T2-weighted maps: discrepancy with histology and other myelin MRI measures.
Brain Struct Funct. 2023 Mar;228(2):525-535. doi: 10.1007/s00429-022-02600-z. Epub 2023 Jan 24.
7
Parental socioeconomic status is linked to cortical microstructure and language abilities in children and adolescents.
Dev Cogn Neurosci. 2022 Aug;56:101132. doi: 10.1016/j.dcn.2022.101132. Epub 2022 Jul 4.
8
Shared genetic influences on resting-state functional networks of the brain.
Hum Brain Mapp. 2022 Apr 15;43(6):1787-1803. doi: 10.1002/hbm.25712. Epub 2022 Jan 25.
9
Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior.
Cereb Cortex. 2021 Aug 26;31(10):4477-4500. doi: 10.1093/cercor/bhab101.
10
Regional and depth-dependence of cortical blood-flow assessed with high-resolution Arterial Spin Labeling (ASL).
J Cereb Blood Flow Metab. 2021 Aug;41(8):1899-1911. doi: 10.1177/0271678X20982382. Epub 2021 Jan 14.

本文引用的文献

1
Multimodal surface matching: fast and generalisable cortical registration using discrete optimisation.
Inf Process Med Imaging. 2013;23:475-86. doi: 10.1007/978-3-642-38868-2_40.
2
The WU-Minn Human Connectome Project: an overview.
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.
3
The minimal preprocessing pipelines for the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:105-24. doi: 10.1016/j.neuroimage.2013.04.127. Epub 2013 May 11.
4
Trends and properties of human cerebral cortex: correlations with cortical myelin content.
Neuroimage. 2014 Jun;93 Pt 2:165-75. doi: 10.1016/j.neuroimage.2013.03.060. Epub 2013 Apr 6.
5
Spatially constrained hierarchical parcellation of the brain with resting-state fMRI.
Neuroimage. 2013 Aug 1;76:313-24. doi: 10.1016/j.neuroimage.2013.03.024. Epub 2013 Mar 21.
7
A weighted and directed interareal connectivity matrix for macaque cerebral cortex.
Cereb Cortex. 2014 Jan;24(1):17-36. doi: 10.1093/cercor/bhs270. Epub 2012 Sep 25.
8
Mapping the human cortical surface by combining quantitative T(1) with retinotopy.
Cereb Cortex. 2013 Sep;23(9):2261-8. doi: 10.1093/cercor/bhs213. Epub 2012 Jul 23.
9
An empirical comparison of surface-based and volume-based group studies in neuroimaging.
Neuroimage. 2012 Nov 15;63(3):1443-53. doi: 10.1016/j.neuroimage.2012.06.019. Epub 2012 Jun 22.
10
The Human Connectome Project: a data acquisition perspective.
Neuroimage. 2012 Oct 1;62(4):2222-31. doi: 10.1016/j.neuroimage.2012.02.018. Epub 2012 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验