Wilkinson Richard David
University of Nottingham, School of Mathematical Sciences, University Park Nottingham, Nottinghamshire NG7 2RD, UK.
Stat Appl Genet Mol Biol. 2013 May 6;12(2):129-41. doi: 10.1515/sagmb-2013-0010.
Approximate Bayesian computation (ABC) or likelihood-free inference algorithms are used to find approximations to posterior distributions without making explicit use of the likelihood function, depending instead on simulation of sample data sets from the model. In this paper we show that under the assumption of the existence of a uniform additive model error term, ABC algorithms give exact results when sufficient summaries are used. This interpretation allows the approximation made in many previous application papers to be understood, and should guide the choice of metric and tolerance in future work. ABC algorithms can be generalized by replacing the 0-1 cut-off with an acceptance probability that varies with the distance of the simulated data from the observed data. The acceptance density gives the distribution of the error term, enabling the uniform error usually used to be replaced by a general distribution. This generalization can also be applied to approximate Markov chain Monte Carlo algorithms. In light of this work, ABC algorithms can be seen as calibration techniques for implicit stochastic models, inferring parameter values in light of the computer model, data, prior beliefs about the parameter values, and any measurement or model errors.
近似贝叶斯计算(ABC)或无似然推断算法用于在不明确使用似然函数的情况下找到后验分布的近似值,而是依赖于从模型模拟样本数据集。在本文中,我们表明,在存在均匀加性模型误差项的假设下,当使用足够的汇总统计量时,ABC算法能给出精确结果。这种解释有助于理解许多先前应用论文中所做的近似,并应指导未来工作中度量和容差的选择。通过用随模拟数据与观测数据的距离而变化的接受概率取代0 - 1截断,可以对ABC算法进行推广。接受密度给出了误差项的分布,使得通常使用的均匀误差能够被一般分布所取代。这种推广也可以应用于近似马尔可夫链蒙特卡罗算法。鉴于此工作,ABC算法可被视为隐式随机模型的校准技术,根据计算机模型、数据、关于参数值的先验信念以及任何测量或模型误差来推断参数值。