Rudge Timothy J, Federici Fernán, Steiner Paul J, Kan Anton, Haseloff Jim
Department of Plant Sciences, University of Cambridge , Cambridge, U.K.
ACS Synth Biol. 2013 Dec 20;2(12):705-14. doi: 10.1021/sb400030p. Epub 2013 Jun 3.
As a model system to study physical interactions in multicellular systems, we used layers of Escherichia coli cells, which exhibit little or no intrinsic coordination of growth. This system effectively isolates the effects of cell shape, growth, and division on spatial self-organization. Tracking the development of fluorescence-labeled cellular domains, we observed the emergence of striking fractal patterns with jagged, self-similar shapes. We then used a large-scale, cellular biophysical model to show that local instabilities due to polar cell-shape, repeatedly propagated by uniaxial growth and division, are responsible for generating this fractal geometry. Confirming this result, a mutant of E. coli with spherical shape forms smooth, nonfractal cellular domains. These results demonstrate that even populations of relatively simple bacterial cells can possess emergent properties due to purely physical interactions. Therefore, accurate physico-genetic models of cell growth will be essential for the design and understanding of genetically programmed multicellular systems.
作为研究多细胞系统中物理相互作用的模型系统,我们使用了大肠杆菌细胞层,这些细胞层几乎没有或完全没有内在的生长协调性。该系统有效地分离了细胞形状、生长和分裂对空间自组织的影响。通过追踪荧光标记细胞区域的发展,我们观察到了具有锯齿状、自相似形状的惊人分形图案的出现。然后,我们使用一个大规模的细胞生物物理模型表明,由于极性细胞形状导致的局部不稳定性,通过单轴生长和分裂反复传播,是产生这种分形几何形状的原因。证实这一结果的是,具有球形形状的大肠杆菌突变体形成了光滑的、非分形的细胞区域。这些结果表明,即使是相对简单的细菌细胞群体,也可能由于纯粹的物理相互作用而具有涌现特性。因此,准确的细胞生长物理遗传模型对于设计和理解基因编程的多细胞系统至关重要。