Suppr超能文献

化学信息学与定量构效关系中的化学图、分子矩阵和拓扑指数

Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.

作者信息

Ivanciuc Ovidiu

机构信息

Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0857, USA.

出版信息

Curr Comput Aided Drug Des. 2013 Jun;9(2):153-63. doi: 10.2174/1573409911309020002.

Abstract

Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.

摘要

化学和分子图在化学信息学、定量结构-性质关系(QSPR)、定量结构-活性关系(QSAR)、化学库的虚拟筛选以及计算药物设计等方面有着基础应用。图的化学信息学应用包括化学结构表示与编码、数据库搜索与检索以及物理化学性质预测。QSPR、QSAR和虚拟筛选基于结构-性质原理,该原理指出化合物的物理化学和生物学性质可由其化学结构预测。此类结构-性质相关性通常由根据分子图计算得到的拓扑指数和指纹以及根据三维化学结构计算得到的分子描述符得出。我们在此展示一些最重要的图描述符和拓扑指数,包括分子矩阵、图谱、谱矩、图多项式以及顶点拓扑指数。这些图描述符用于基于分子连通性、图距离、倒数距离、距离-度、距离-价、谱、多项式以及信息论概念定义若干拓扑指数。分子描述符和拓扑指数可以通过基于分子图算子的更通用方法来开发,分子图算子定义了一族由通用公式相关联的图指数。对于含有杂原子和多重键的分子,图描述符和拓扑指数通过基于原子性质(如原子序数、共价半径或电负性)的加权方案来计算。如基于原子连通性和图距离的结构描述符所示,通过优化拓扑指数公式中的一些参数,可以提高QSPR和QSAR模型中的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验